Chapter 2. First-Order Differential Equations

In this chapter we learn how to obtain solutions for some specific types of first-order equations. We begin by studying separable equations, then the linear equations.

Section 2.1 Introduction: Motion Of a Falling Body (Home reading)
Sections 2.4-2.6 are skipped.

Section 2.2 Separable Equations

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y) \tag{1}
\end{equation*}
$$

Sometimes function $f(x, y)$ can be represented as a product of two functions, one of which depends ONLY on x, another depends ONLY on y, or $f(x, y)=g(x) h(y)$. Then

$$
\begin{equation*}
\frac{d y}{d x}=g(x) h(y) \tag{2}
\end{equation*}
$$

Lets multiply equation (2) by $\frac{d x}{h(y)}$, then

$$
\begin{aligned}
\frac{d y}{h(y)} & =g(x) d x \\
\int \frac{d y}{h(y)} & =\int g(x) d x
\end{aligned}
$$

Thus, the solution to an equation (2) is

$$
H(y)=G(x)+C,
$$

here $H(y)$ is an antiderivative of $1 / h(y), G(x)$ is an antiderivative of $g(x), C$ is a constant.
Example 1. Determine whether the given equation is separable.
(a) $(x-2 y)^{2} y^{\prime}=2$

The ANSWER is NO.
(b) $y^{4} \mathrm{e}^{y}+\left(x^{3}+1\right) y^{\prime}=y^{\prime}\left(x^{3}+1\right) \mathrm{e}^{2 y}$

The ANSWER is YES, because

$$
y^{\prime}=\left(x^{3}+1\right) \frac{y^{4} \mathrm{e}^{y}}{\mathrm{e}^{2 y}-1}=g(x) p(y) .
$$

(c) $y x \ln x d x-\sqrt{y} d y+x \ln x d x=0$

The ANSWER is YES

$$
x \ln x d x=\frac{\sqrt{y}}{1+y}
$$

(d) $y^{\prime}=\cot ^{2}\left(\frac{x}{2}+y-1\right)+\frac{1}{2}$

The ANSWER is NO.

Example 2. Solve the equations/initial value problems:
(a) $x y d x+(x+1) d y=0$

SOLUTION Lets separate variables and rewrite the equation in the form

$$
\frac{d y}{y}=-\frac{x}{x+1} d x
$$

Integrating, we have

$$
\begin{gathered}
\int \frac{d y}{y}=-\int \frac{x}{x+1} d x \\
\ln y=-x+\ln (x+1)+C,
\end{gathered}
$$

and solving this last equation for y gives

$$
y=\mathrm{e}^{-x+\ln (x+1)+C}=C_{1}(x+1) \mathrm{e}^{-x}
$$

where $C_{1}=\mathrm{e}^{C}$.
(b) $\left(x^{2}-1\right) y^{\prime}+2 x y^{2}=0, \quad y(0)=1$

SOLUTION Separating the variables and integrating gives

$$
\begin{gathered}
\frac{d y}{y^{2}}=-\frac{2 x d x}{x^{2}-1} \\
\int \frac{d y}{y^{2}}=-\int \frac{2 x d x}{x^{2}-1} \\
\frac{1}{y}=\ln \left|x^{2}-1\right|+C \\
y=\frac{1}{\ln \left|x^{2}-1\right|+C}
\end{gathered}
$$

Putting $x=0$ in solution gives

$$
y(0)=\frac{1}{C}=1,
$$

and so $C=1$. Thus, the solution to the initial value problem is

$$
y=\frac{1}{\ln \left|x^{2}-1\right|+1} .
$$

(c) $x y d x-\sqrt{x^{2}+1} \ln ^{2} y d y=0$

SOLUTION Separating the variables and integrating gives

$$
\begin{aligned}
\frac{\ln ^{2} y d y}{y} & =\frac{x d x}{\sqrt{x^{2}+1}} \\
\int \frac{\ln ^{2} y d y}{y} & =\int \frac{x d x}{\sqrt{x^{2}+1}}
\end{aligned}
$$

$$
\frac{\ln ^{3} y}{3}=\sqrt{x^{2}+1}+C
$$

Thus, the implicit solution to the equation is

$$
\ln ^{3} y=3 \sqrt{x^{2}+1}+C_{1}
$$

where $C_{1}=3 C$.
(d) $x \cos ^{2} y d x-\mathrm{e}^{x} \sin 2 y d y=0, \quad y(0)=0$

SOLUTION Separating the variables and integrating gives

$$
\begin{gathered}
\frac{\sin 2 y d y}{\cos ^{2} y}=x \mathrm{e}^{x} d x \\
2 \frac{\sin y d y}{\cos y}=x \mathrm{e}^{x} d x \\
2 \int \frac{\sin y d y}{\cos y}=\int x \mathrm{e}^{x} d x \\
-2 \ln |\cos y|=(x-1) \mathrm{e}^{x}+C
\end{gathered}
$$

Thus, the implicit solution to the given equation is

$$
\ln |\cos y|=\frac{1}{2}(1-x) \mathrm{e}^{x}+C_{1}
$$

where $C_{1}=-1 / 2 C$. Finally, we have to determine C_{1} such that the initial condition is satisfied. Putting $x=0$ and $y=0$ in solution gives $0=1 / 2+C_{1}$, so $C_{1}=-1 / 2$. Thus, the solution to the initial value problem is

$$
\ln |\cos y|=\frac{1}{2}(1-x) \mathrm{e}^{x}-\frac{1}{2}
$$

