Chapter 2. First-Order Differential Equations

Example 1. Solve the equation

$$
x^{2} y^{2} y^{\prime}+1=y .
$$

SOLUTION Separating the variables and integrating gives

$$
\begin{aligned}
\frac{y^{2}}{y-1} d y & =\frac{d x}{x} \\
\int \frac{y^{2}}{y-1} d y & =\int \frac{d x}{x} .
\end{aligned}
$$

So, the implicit solution to the equation is

$$
\frac{y^{2}}{2}+y+\ln |y-1|=-\frac{1}{x}+C
$$

Section 2.3 Linear Equations

A linear first-order equation is an equation that can be expressed in the form

$$
\begin{equation*}
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=b(x) \tag{1}
\end{equation*}
$$

where $a_{0}(x), a_{1}(x), b(x)$ depend only on x.
We will assume that $a_{0}(x), a_{1}(x), b(x)$ are continuous functions of x on an interval I.
For now, we are interested in those linear equations for which $a_{1}(x)$ is never zero on I. In that case we can rewrite (1) in the standard form

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=Q(x) \tag{2}
\end{equation*}
$$

where $P(x)=a_{0}(x) / a_{1}(x)$ and $Q(x)=b(x) / a_{1}(x)$ are continuous on I.
There are two methods of solving linear first-order differential equations.

Method 1.

Equation (2) can be solved by finding an integrating factor $\mu(x)$ such that

$$
\frac{d}{d x}[\mu y]=\frac{d y}{d x} \mu+\frac{d \mu}{d x} y=\mu Q(x) .
$$

Since,

$$
\begin{gathered}
\frac{d y}{d x}=Q(x)-P(x) y \\
\frac{d}{d x}[\mu y]=\frac{d y}{d x} \mu+\frac{d \mu}{d x} y=(Q(x)-P(x) y) \mu+\frac{d \mu}{d x} y=\frac{d \mu}{d x} y-P(x) y \mu+\mu Q(x)= \\
\left(\frac{d \mu}{d x}-P(x) \mu\right) y+\mu Q(x)=\mu Q(x) .
\end{gathered}
$$

Clearly, this requires that μ satisfy

$$
\begin{equation*}
\frac{d \mu}{d x}-P(x) \mu=0 \tag{3}
\end{equation*}
$$

Lets find the solution to equation (3).

$$
\begin{gather*}
\frac{d \mu}{d x}-P(x) \mu=0 \\
\frac{d \mu}{d x}=P(x) \mu \\
\frac{d \mu}{\mu}=P(x) d x \\
\int \frac{d \mu}{\mu}=\int P(x) d x \\
\ln \mu=\int P(x) d x \\
\mu=\exp \left[\int P(x) d x\right] . \tag{4}
\end{gather*}
$$

With this choice for $\mu(x)$, equation (2) becomes

$$
\begin{gather*}
\frac{d}{d x}[\mu(x) y]=\mu(x) Q(x) \\
\mu(x) y=\int \mu(x) Q(x) d x+C \\
y=\frac{1}{\mu} \int \mu(x) Q(x) d x+C \tag{5}
\end{gather*}
$$

here C is an arbitrary constant.
The solution (5) to equation (2) is called the general solution.
Example 2. Obtain the general solution to the equation

$$
x y^{\prime}-y=-\ln x
$$

SOLUTION To put this equation in standard form, we divide by x to obtain

$$
y^{\prime}-\frac{y}{x}=-\frac{\ln x}{x}
$$

Here $P(x)=-\frac{1}{x}, Q(x)=-\frac{\ln x}{x}$.
We can find the integrating factor $\mu(x)$ solving the equation

$$
\frac{d \mu}{d x}+\frac{1}{x} \mu=0 .
$$

Separating the variables and integrating gives

$$
\begin{aligned}
\frac{d \mu}{\mu} & =-\frac{d x}{x} \\
\int \frac{d \mu}{\mu} & =-\int \frac{d x}{x} \\
\ln \mu & =-\ln x \\
\mu(x) & =\frac{1}{x}
\end{aligned}
$$

Now, we can find y from the equation

$$
\frac{d}{d x}\left[-\frac{1}{x} y\right]=\frac{1}{x} \frac{\ln x}{x}=\frac{\ln x}{x^{2}}
$$

Integrating gives

$$
-\frac{y}{x}=\int \frac{\ln x}{x^{2}} d x=-\frac{\ln x}{x}-\frac{1}{x}+C .
$$

Thus, the general solution to the given equation is

$$
y(x)=\ln x+1+C x .
$$

Method 2 (variation of parameter).

Associated with equation $y^{\prime}+P(x) y=Q(x)$ is the equation

$$
\begin{equation*}
y^{\prime}+P(x) y=0 \tag{6}
\end{equation*}
$$

which is obtained from (2) by replacing $Q(x)$ with zero. We say that equation (2) is a nonhomogeneous equation and that (6) is the corresponding homogeneous equation.

We can obtain the general solution to the nonhomegeneous equation solving homogeneous equation

$$
y^{\prime}+P(x) y=0
$$

The solution to homogeneous equation is

$$
y_{\mathrm{hom}}(x)=C \exp \left[-\int P(x) d x\right]
$$

then the general solution to the nonhomogeneous equation is

$$
\begin{equation*}
y(x)=C(x) \exp \left[-\int P(x) d x\right] \tag{7}
\end{equation*}
$$

where $C(x)$ is an unknown function that depends on x.
Since

$$
\begin{equation*}
y^{\prime}(x)=C^{\prime}(x) \exp \left[-\int P(x) d x\right]-C(x) P(x) \exp \left[-\int P(x) d x\right] \tag{8}
\end{equation*}
$$

substitution of right parts of (8) and (7) for y and y^{\prime} in nonhomogeneous equation gives

$$
\begin{gathered}
C^{\prime}(x) \exp \left[-\int P(x) d x\right]-C(x) P(x) \exp \left[-\int P(x) d x\right]+P(x) C(x) \exp \left[-\int P(x) d x\right]=Q(x), \\
C^{\prime}(x) \exp \left[-\int P(x) d x\right]=Q(x) \\
C^{\prime}(x)=Q(x) \exp \left[\int P(x) d x\right] \\
C^{\prime}(x)=\int Q(x) \exp \left[\int P(x) d x\right] d x+C_{1}
\end{gathered}
$$

where C_{1} is an arbitrary constant. Thus, the general solution to nonhomogeneous equation is

$$
y(x)=\exp \left[-\int P(x) d x\right] \int Q(x) \exp \left[\int P(x) d x\right] d x+C_{1} .
$$

Example 3. Obtain the general solution to the equation

$$
x y^{\prime}-y=-\ln x
$$

using Method 2.
SOLUTION. The corresponding homogeneous equation to the given equation is

$$
x y^{\prime}-y=0 .
$$

Separating the variables and integrating gives

$$
\begin{aligned}
\frac{d y}{y} & =\frac{d x}{x} \\
\int \frac{d y}{y} & =\int \frac{d x}{x} \\
y_{\text {hom }} & =C x
\end{aligned}
$$

The general solution to the given nonhomogeneous equation is

$$
y(x)=C(x) x
$$

where $C(x)$ is an unknown function.

$$
y^{\prime}(x)=C^{\prime}(x) x+C(x)
$$

Then

$$
\begin{gathered}
C^{\prime}(x) x^{2}+C(x) x-C(x) x=-\ln x \\
C^{\prime}(x)=-\frac{\ln x}{x^{2}} \\
C(x)=-\int \frac{\ln x}{x^{2}} d x=\frac{\ln x}{x}+\frac{1}{x}+C_{1} .
\end{gathered}
$$

Thus, the general solution to the given nonhomogeneous equation is

$$
y(x)=\left(\frac{\ln x}{x}+\frac{1}{x}+C_{1}\right) x=\ln x+1+C_{1} x
$$

Existence and uniqueness of solution

Theorem 1. Suppose $P(x)$ and $Q(x)$ are continuous on some interval I that contains the point x_{0}. Then for any choice of initial value y_{0}, there exists a unique solution $y(x)$ on I to the initial value problem

$$
\begin{equation*}
y^{\prime}+P(x) y=Q(x), \quad y\left(x_{0}\right)=y_{0} . \tag{9}
\end{equation*}
$$

In fact, the solution is given by (5) for a suitable value of C.

