Chapter 2. First-Order Differential Equations Section 2.3 Linear Equations

A linear first-order equation is an equation that can be expressed in the form

$$
\begin{equation*}
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=b(x) \tag{1}
\end{equation*}
$$

where $a_{0}(x), a_{1}(x), b(x)$ depend only on x.
We will assume that $a_{0}(x), a_{1}(x), b(x)$ are continuous functions of x on an interval I.
For now, we are interested in those linear equations for which $a_{1}(x)$ is never zero on I. In that case we can rewrite (1) in the standard form

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=Q(x) \tag{2}
\end{equation*}
$$

where $P(x)=a_{0}(x) / a_{1}(x)$ and $Q(x)=b(x) / a_{1}(x)$ are continuous on I.

Method 1 for solving linear equations

(a) Write the equation in the standart form (2).
(b) Find the integrating factor $\mu(x)$ solving differential equation

$$
\frac{d \mu}{d x}-P(x) \mu=0
$$

(c) Integrate the equation

$$
\frac{d}{d x}[\mu y]=\mu Q(x)
$$

and solve for y by dividing by $\mu(x)$.

Method 2 (variation of parameter) for solving linear equations

(a) Write the equation in the standart form (2).
(b) Write the corresponding homogeneous equation

$$
\begin{equation*}
y^{\prime}+P(x) y=0 \tag{3}
\end{equation*}
$$

which is obtained from (2) by replacing $Q(x)$ with zero.
(c) Find the solution to the homogeneous equation (3)

$$
\begin{equation*}
y_{\mathrm{hom}}(x)=C \exp \left[-\int P(x) d x\right], \tag{4}
\end{equation*}
$$

(d) Write the solution to the nonhomogeneous equation

$$
\begin{equation*}
y(x)=C(x) \exp \left[-\int P(x) d x\right] \tag{5}
\end{equation*}
$$

where $C(x)$ is an unknown function.
(e) Find $C(x)$ integrating the equation

$$
C^{\prime}(x)=Q(x) \exp \left[\int P(x) d x\right] .
$$

(f) Substitute $C(x)$ into (5).

Existence and uniqueness of solution

Theorem 1. Suppose $P(x)$ and $Q(x)$ are continuous on some interval I that contains the point x_{0}. Then for any choice of initial value y_{0}, there exists a unique solution $y(x)$ on I to the initial value problem

$$
\begin{equation*}
y^{\prime}+P(x) y=Q(x), \quad y\left(x_{0}\right)=y_{0} . \tag{6}
\end{equation*}
$$

Example 1. Obtain the general solution to the equation

$$
y^{\prime} \cos x+y \sin x=\cos ^{4} x
$$

SOLUTION We will assume, that $\cos x \neq 0$ or $x \neq \frac{\pi}{2}+2 \pi n, n=0, \pm 1, \pm 2, \ldots$ so, we can divide an equation by $\cos x$

$$
y^{\prime}+y \frac{\sin x}{\cos x}=\cos ^{3} x
$$

For this equation $P(x)=\frac{\sin x}{\cos x}, Q(x)=\cos ^{3} x$.
I will solve this equation using method 1 . So, equation for μ is

$$
\mu^{\prime}-\frac{\sin x}{\cos x} \mu=0
$$

Seprating the variables and integrating gives

$$
\begin{gathered}
\frac{d \mu}{\mu}=\frac{\sin x}{\cos x} d x \\
\int \frac{d \mu}{\mu}=\int \frac{\sin x}{\cos x} d x \\
\ln |\mu(x)|=-\ln |\cos x| \\
\mu(x)=\frac{1}{\cos x} .
\end{gathered}
$$

Lets find y

$$
\begin{gathered}
\frac{d}{d x}\left[\frac{1}{\cos x} y\right]=\frac{1}{\cos x} \cos ^{3} x \\
\frac{1}{\cos x} y=\int \cos ^{2} x d x=\int \frac{\cos 2 x+1}{2} d x=\frac{1}{2} x+\frac{1}{4} \sin 2 x+C,
\end{gathered}
$$

so,

$$
y(x)=\frac{1}{2} x \cos x+\frac{1}{4} \sin 2 x \cos x+C \cos x .
$$

Example 2. Solve the initial value problem.

$$
d y-y d x-2 x \mathrm{e}^{x} d x=0, \quad y(0)=\mathrm{e}-2
$$

Lets rewrite this equation in the form

$$
y^{\prime}-y=2 x \mathrm{e}^{x} .
$$

I'm going to solve this equation using method 2 . The corresponding homogeneous equation is

$$
y^{\prime}-y=0
$$

and the solution to this equation is

$$
\ln |y|=x+C,
$$

or

$$
y=C_{1} \mathrm{e}^{x},
$$

where $C_{1}=\mathrm{e}^{C}$.
Then the solution to nonhomogeneous equation is

$$
y=C_{1}(x) \mathrm{e}^{x}
$$

here $C_{1}(x)$ is an unknown function.
Lets find y^{\prime}.

$$
y^{\prime}=C_{1}^{\prime}(x) \mathrm{e}^{x}+C_{1}(x) \mathrm{e}^{x} .
$$

Substituting expression for y and y^{\prime} into nonhomogeneous equation gives

$$
\begin{gathered}
C_{1}^{\prime}(x) \mathrm{e}^{x}+C_{1}(x) \mathrm{e}^{x}-C_{1}(x) \mathrm{e}^{x}=2 x \mathrm{e}^{x} \\
C_{1}^{\prime}(x) \mathrm{e}^{x}=2 x \mathrm{e}^{x} \\
C_{1}^{\prime}(x)=2 x \\
C_{1}(x)=x^{2}+C_{2}
\end{gathered}
$$

Thus, the solution to the nonhomogeneous equation is

$$
y=\left(x^{2}+C_{2}\right) \mathrm{e}^{x} .
$$

