Chapter 4. Linear Second Order Equations

Chapter 4.1 is skipped.

Section 4.2 Linear Differential Operators

A linear second order equation is an equation that can be written in the form

$$
\begin{equation*}
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=b(x) \tag{1}
\end{equation*}
$$

We will assume that $a_{0}(x), a_{1}(x), a_{2}(x), b(x)$ are continuous functions of x on an interval I. When a_{0}, a_{1}, a_{2}, b are constants, we say the equation has constant coefficients, otherwise it has variable coefficients.

For now, we are interested in those linear equations for which $a_{2}(x)$ is never zero on I. In that case we can rewrite (1) in the standard form

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+p(x) \frac{d y}{d x}+q(x) y=g(x) \tag{2}
\end{equation*}
$$

where $p(x)=a_{1}(x) / a_{2}(x), q(x)=a_{0}(x) / a_{2}(x)$ and $g(x)=b(x) / a_{2}(x)$ are continuous on I. Associated with equation (2) is the equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{3}
\end{equation*}
$$

which is obtained from (2) by replacing $g(x)$ with zero. We say that equation (2) is a nonhomogeneous equation and that (3) is the corresponding homogeneous equation.

Let's consider the expression on the left-hand side of equation (3),

$$
\begin{equation*}
y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x) . \tag{4}
\end{equation*}
$$

Given any function y with a continuous second derivative on the interval I, then (4) generates a new function

$$
\begin{equation*}
L[y]=y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x) . \tag{5}
\end{equation*}
$$

What we have done is to associate with each function y the function $L[y]$. This function L is defined on a set of functions. Its domain is the collection of functions with continuous second derivatives; its range consists of continuous functions; and the rule of correspondence is given by (5). We will call this mappings operators. Because L involves differentiation, we refer to L as a differential operator.

The image of a function t under the operator L is the function $L[y]$. If we want to evaluate this image function at some point x, we write $L[y](x)$.

Example 1. Let $L[y](x)=x^{2} y^{\prime \prime}(x)-3 x y^{\prime}(x)-5 y(x)$. Compute
(a) $L[\cos x]$;
(b) $L\left[x^{-1}\right]$;
(c) $L\left[\mathrm{e}^{r x}\right], r$ a constant.

SOLUTION.
(a) If $y=\cos x$, then $y^{\prime}=-\sin x$ and $y^{\prime \prime}=-\cos x$, so
$L[y](x)=x^{2} y^{\prime \prime}(x)-3 x y^{\prime}(x)-5 y(x)=x^{2}(-\cos x)-3 x(-\sin x)-5 \cos x=-\left(x^{2}+5\right) \cos x+3 x \sin x$.

Thus, L maps the function $\cos x$ to the function $-\left(x^{2}+5\right) \cos x+3 x \sin x$.
(b) If $y=x^{-1}$, then we similarly find

$$
L[y](x)=x^{2} y^{\prime \prime}(x)-3 x y^{\prime}(x)-5 y(x)=x^{2} \frac{2}{x^{3}}-3 x\left(-\frac{1}{x^{2}}\right)-5 \frac{1}{x}=\frac{2}{x}+\frac{3}{x}-\frac{5}{x}=0 .
$$

Thus, L maps the function x^{-1} to the zero function (or $y=x^{-1}$ is the solution to the equation $\left.x^{2} y^{\prime \prime}(x)-3 x y^{\prime}(x)-5 y(x)=0\right)$.
(c) If $y=\mathrm{e}^{r x}$,

$$
L[y](x)=x^{2} y^{\prime \prime}(x)-3 x y^{\prime}(x)-5 y(x)=x^{2} r^{2} \mathrm{e}^{r x}-3 x r \mathrm{e}^{r x}-5 \mathrm{e}^{r x}=\left((x r)^{2}-3 x r-5\right) \mathrm{e}^{r x}
$$

Thus, L maps the function $\mathrm{e}^{r x}$ to the function $\left((x r)^{2}-3 x r-5\right) \mathrm{e}^{r x}$.
The differential operator L defined by (5) has two very important properties.

Lemma 1. Let $L[x]=y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x)$. If y, y_{1}, and y_{2} are any twicedifferentiable functions on the interval I and if c is any constant, then

$$
\begin{gather*}
L\left[y_{1}+y_{2}\right]=L\left[y_{1}\right]+L\left[y_{2}\right], \tag{6}\\
L[c y]=c L[y] . \tag{7}
\end{gather*}
$$

Proof. On I, we have

$$
\begin{gathered}
L\left[y_{1}+y_{2}\right]=\left(y_{1}+y_{2}\right)^{\prime \prime}+p(x)\left(y_{1}+y_{2}\right)^{\prime}+q(x)\left(y_{1}+y_{2}\right)=\left(y_{1}^{\prime \prime}+y_{2}^{\prime \prime}\right)+p(x)\left(y_{1}^{\prime}+y_{2}^{\prime}\right)+q(x)\left(y_{1}+y_{2}\right)= \\
\left(y_{1}^{\prime \prime}+p(x) y_{1}^{\prime}+q(x) y_{1}\right)+\left(y_{2}^{\prime \prime}+p(x) y_{2}^{\prime}+q(x) y_{2}\right)=L\left[y_{1}\right]+L\left[y_{2}\right],
\end{gathered}
$$

which verifies property (6).
Similarly we can prove property (7).

Any operator that satisfied satisfies properties (6) and (7) for any constant c and any functions y, y_{1}, and y_{2} in its domain is called a linear operator and we can say that " L preserves linear combination". If (6) or (7) fails to hold, the operator is nonlinear.

Lemma 1 says that the operator L, defined by (5) is linear.
Example 2. Show that T defined by

$$
T[y]=y^{\prime \prime}+\left\{y^{\prime} y^{2}\right\}^{1 / 3}
$$

is a nonlinear.
SOLUTION. To demonstrate that T is nonlinear, it suffices to show that property (6) (or (7)) is not always satisfied. Let's try $y_{1}(x)=x^{2}$ and $y_{2}(x)=x^{3}$. Since $y_{1}^{\prime}(x)=2 x, y_{1}^{\prime}(x)=2$, $y_{2}^{\prime}(x)=3 x^{2}, y_{2}^{\prime \prime}(x)=6 x$,

$$
T\left[y_{1}\right]=2+\left\{2 x \cdot x^{4}\right\}^{1 / 3}=2+\left\{2 x^{5}\right\}^{1 / 3}
$$

$$
\begin{gathered}
T\left[y_{2}\right]=6 x+\left\{3 x^{2} \cdot x^{6}\right\}^{1 / 3}=6 x+\left\{3 x^{8}\right\}^{1 / 3} \\
T\left[y_{1}+y_{2}\right]=2+6 x+\left\{\left(2 x^{5}+3 x^{8}\right)\left(x^{2}+x^{3}\right)^{2}\right\}^{1 / 3} \neq 2+\left\{2 x^{5}\right\}^{1 / 3}+6 x+\left\{3 x^{7}\right\}^{1 / 3}
\end{gathered}
$$

so $T\left[y_{1}\right]+T\left[y_{2}\right] \neq T\left[y_{1}+y_{2}\right]$, property (6) is violated. Hence, T is a nonlinear operator.
The linearity of the differential operator L in (5) can be used to prove the following theorem concerning homogeneous equations.

Theorem 1 (linear combination of solutions). Let y_{1} and y_{2} be solutions to the homogeneous equation (3). Then any linear combination $C_{1} y_{1}+C_{2} y_{2}$ of y_{1} and y_{2}, where C_{1} and C_{2} are constants, is also the solution to (3).

Proof. Since y_{1} and y_{2} are solutions to (3), then $L\left[y_{1}\right]=0$ and $L\left[y_{2}\right]=0$. Using the linearity of L, we have

$$
L\left[C_{1} y_{1}+C_{2} y_{2}\right]=L\left[C_{1} y_{1}\right]+L\left[C_{2} y_{2}\right]=C_{1} L\left[y_{1}\right]+C_{2} L\left[y_{2}\right]=0
$$

for any C_{1} and C_{2}. Thus, $C_{1} y_{1}+C_{2} y_{2}$ is a solution to (3).
Example 3. Given that $y_{1}(x)=\mathrm{e}^{2 x} \cos x$ and $y_{2}(x)=\mathrm{e}^{2 x} \sin x$ are solutions to the homogeneous equation

$$
y^{\prime \prime}-4 y^{\prime}+5 y=0
$$

find solutions to this equation that satisfy the following initial conditions:
(a) $y(0)=2, y^{\prime}(0)=1$.
(b) $y(\pi)=4 \mathrm{e}^{2 \pi}, y^{\prime}(\pi)=5 \mathrm{e}^{2 \pi}$.

SOLUTION. As a consequence of T.1, any linear combination

$$
y(x)=C_{1} \mathrm{e}^{2 x} \cos x+C_{2} \mathrm{e}^{2 x} \sin x
$$

with C_{1} and C_{2} arbitrary consrants, will be the solution also.

$$
\begin{gathered}
y^{\prime}(x)=2 C_{1} \mathrm{e}^{2 x} \cos x-C_{1} \mathrm{e}^{2 x} \sin x+2 C_{2} \mathrm{e}^{2 x} \sin x+C_{2} \mathrm{e}^{2 x} \cos x= \\
\left(2 C_{1}+C_{2}\right) \mathrm{e}^{2 x} \cos x+\left(2 C_{2}-C_{1}\right) \mathrm{e}^{2 x} \sin x .
\end{gathered}
$$

(a)

$$
\begin{gathered}
y(0)=C_{1}(1)(1)+C_{2}(1)(0)=C_{1}=2, \\
y^{\prime}(0)=\left(2 C_{1}+C_{2}\right)(1)+\left(2 C_{2}-C_{1}\right)(0)=2 C_{1}+C_{2}=1 .
\end{gathered}
$$

Since $C_{2}=1-2 C_{1}$ and $C_{1}=2, C_{2}=-3$. Hence, the solution to the given initial value problem is

$$
y(x)=2 \mathrm{e}^{2 x} \cos x-3 \mathrm{e}^{2 x} \sin x
$$

(b)

$$
y(\pi)=C_{1} \mathrm{e}^{2 \pi}(-1)+C_{2} \mathrm{e}^{2 \pi}(0)=-C_{1} \mathrm{e}^{2 \pi}=4 \mathrm{e}^{2 \pi}
$$

so, $C_{1}=-4$.

$$
y^{\prime}(\pi)=\left(2 C_{1}+C_{2}\right) \mathrm{e}^{2 \pi}(-1)+\left(2 C_{2}-C_{1}\right) \mathrm{e}^{2 \pi}(0)=-\left(2 C_{1}+C_{2}\right) \mathrm{e}^{2 \pi}=5 \mathrm{e}^{2 \pi}
$$

so, $2 C_{1}+C_{2}=-5$. Since $C_{2}=-5-2 C_{1}$ and $C_{1}=-4, C_{2}=3$. Hence, the solution to the given initial value problem is

$$
y(x)=-4 \mathrm{e}^{2 x} \cos x+3 \mathrm{e}^{2 x} \sin x
$$

