MATH $308 \quad$ Fall $2007 \quad$ Practice Exam I

1. For each of the differential equations below state its order and whether it is linear or nonlinear.

	Equation	order	linear/nonlinear
(i)	$y^{\prime \prime}+t y^{\prime}+t^{2} y=0$		
$($ ii $)$	$y^{\prime \prime \prime}+2 y^{\prime}-3 y^{4}=0$		
$($ iii $)$	$y^{\prime}=y^{2}+4 y-5$		
$($ iv $)$	$e^{2 t} y^{\prime \prime}-2 y^{\prime}+3 y=\sqrt[3]{t}$		
(v)	$\left(y^{\prime}\right)^{2}+2 y=\ln t$		

2. Given the differential equation $y^{\prime}-2 y=e^{2 t}$ with the initial condition $y(0)=2$. Which of the following will is the correct solution to this problem?
(a) $y(t)=e^{2 t}+e^{-2 t}$
(b) $y(t)=(t+2) e^{2 t}$
(c) $y(t)=(t+2) e^{-2 t}$
(d) $y(t)=2 e^{2 t}-e^{-2 t}$
3. Which of the following will be an integrating factor for the differential equation:

$$
t y^{\prime}-2 y=2 \cos 2 t ?
$$

(a) $\frac{1}{t^{2}}$
(b) $e^{-2 t}$
(c) $-t^{2}$
(d) $-2 t$
4. The Existence and Uniqueness Theorem guarantees that the solution to

$$
t^{3} y^{\prime \prime}+\frac{t}{\sin t} y^{\prime}-\frac{2}{t-5} y=0, \quad y(2)=6, \quad y^{\prime}(2)=7
$$

uniquely exists on
(a) $(-\pi, \pi)$
(b) $(0, \pi)$
(c) $(5, \infty)$
(d) $(0,5)$
5. All of the following pairs of functions form a fundamental set of solutions to some second order differential equation on $(-\infty, \infty)$ EXCEPT
(a) $1, \quad e^{-t}$
(b) $\cos t, \quad \sin (t+2 \pi)$
(c) $e^{-2 t} \cos 2 t, \quad e^{-2 t} \sin 2 t$
(d) $e^{5 t}, \quad e^{5 t-1}$
6. Which of the following will be a particular solution to the equation

$$
4 y^{\prime \prime}+4 y^{\prime}+y=24 x \mathbf{e}^{\frac{x}{2}} ?
$$

(a) $x^{2}(A x+B) \mathbf{e}^{\frac{x}{2}}$
(b) $(A x+B) \mathrm{e}^{\frac{x}{2}}$
(c) $x(A x+B) \mathrm{e}^{\frac{x}{2}}$
(a) $(A x+B) \sin \frac{x}{2}+(C x+D) \cos \frac{x}{2}$
7. All the following differential operators are linear EXCEPT
(a) $L[y]=y^{\prime \prime}-3 y^{\prime}+y^{3}$
(b) $L[y]=y^{\prime \prime}+y^{\prime}+2 y$
(c) $L[y]=y^{\prime \prime}+\sin x y^{\prime}+\cos x y$
(d) $L[y]=y^{\prime \prime}+x y^{\prime}+(x-1) y$
8. Find a general solution to the equation

$$
y^{\prime \prime}+6 y^{\prime}+9 y=\frac{e^{-3 x}}{1+2 x}
$$

9. Solve the following initial value problem:

$$
y^{\prime}=\frac{4 x-3}{2 y+6}, \quad y(1)=-5
$$

Write your solution in the explicit form.
10. Find a particular solution to the equation

$$
4 y^{\prime \prime}+y^{\prime}=4 x^{3}+48 x^{2}+1
$$

11. Find a Wronskian of two solutions of

$$
x y^{\prime \prime}-(x+1) y^{\prime}-y=0 ; \quad x>0
$$

provided $W\left[y_{1}, y_{2}\right](1)=1$.
12. Solve the following initial value problem

$$
4 y^{\prime \prime}+12 y^{\prime}+13 y=0, \quad y(0)=1, \quad y^{\prime}(0)=-2
$$

13. Find the general solution to

$$
\frac{1}{x} \frac{d y}{d x}-\frac{2 y}{x^{2}}=x \cos x
$$

14. Given that $y_{1}(x)=x$ is a solution to

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0,
$$

find the general solution to this equation on $(0,+\infty)$.

