1. Solve the IVP

$$
\left(x^{2}+1\right) \frac{d y}{d x}+x y=x, \quad y(0)=1
$$

2. Suppose the object takes 40 min to cool from $30^{\circ} \mathrm{C}$ to $24^{\circ} \mathrm{C}$ in a room that is kept at $20^{\circ} \mathrm{C}$.
(a) What was the temperature of the object 15 min after it was 30° ?
(b) How long will it take the object to cool down to $21^{0} \mathrm{C}$?
3. A $50-\mathrm{kg}$ object is released from rest 100 m above the ground and allowed to fall under the influence of gravity. Assume that the force in Newtons due to air resistance is $-5 v$, where v is the velocity of the object in $\mathrm{m} / \mathrm{sec}$.
a) Determine the equation of motion of the object.
b) When will the object hit the ground?
4. Given that $y_{1}(x)=x^{-1}$ is a solution to

$$
x^{2} y^{\prime \prime}-2 x y^{\prime}-4 y=0,
$$

find the general solution to this equation on $(0,+\infty)$.
5. Solve the following IVP

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 x^{2}-5, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

6. Find the general solution to the equation

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{\mathrm{e}^{x}}{x}
$$

using the method of variation of parameters.
7. A $2-\mathrm{kg}$ mass is attached to a spring hanging from the ceiling, thereby causing the spring to stretch 20 cm upon coming to rest at equilibrium. At $t=0$, the mass is displaced 5 cm below the equilibrium position and released. At this same instant, an external force $F(t)=0.3 \cos t \mathrm{~N}$ is applied to the system. If the dumping constant for the system is $5 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$, determine the equation of motion for the mass.
8. Two large tanks each holding 50 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of $5 \mathrm{~L} / \mathrm{min}$ and from B to A at a rate of $3 \mathrm{~L} / \mathrm{min}$. The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.4 kg / L of salt flows into tank A at a rate of $6 \mathrm{~L} / \mathrm{min}$. The solution flows out of the system, from tank A at $4 \mathrm{~L} / \mathrm{min}$ and from tank B at $2 \mathrm{~L} / \mathrm{min}$. Initially, tank A contains 5 kg of salt and tank B contains pure water. Determine the mass of salt at each tank at time $t>0$.
9. Use the elimination method to find the general solution to the system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=2 x-4 y \\
\frac{d y}{d t}=x-3 y+3 \mathrm{e}^{-t}
\end{array}\right.
$$

10. Find $\mathcal{L}\left\{2 t^{2} \mathrm{e}^{-t}-t+\cos 4 t\right\}$.
11. Find $\mathcal{L}^{-1}\left\{\frac{7 s^{2}+23 s+30}{(s-2)\left(s^{2}+2 s+5\right)}\right\}$.
12. Solve the IVP using the method of Laplace transform

$$
y^{\prime \prime}-4 y=4 t-8 \mathrm{e}^{-2 t}, \quad y(0)=0, \quad y^{\prime}(0)=5 .
$$

13. Find $\mathcal{L}^{-1}\left\{\frac{\mathrm{e}^{-3 s}(s-5)}{(s+1)(s+2)}\right\}$.
14. Find the Laplace transform for the function

$$
f(t)= \begin{cases}\sin 2 t, & 0 \leq t<\frac{\pi}{2} \\ t, & \frac{\pi}{2} \leq t<2 \\ \mathrm{e}^{-t}, & t \geq 2\end{cases}
$$

15. Find the general solution to the system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=4 x-y-z \\
\frac{d y}{d t}=x+2 y-z \\
\frac{d z}{d t}=x-y+2 z
\end{array}\right.
$$

