MATH 308 Sheet 1

Some syntax trouble spots:

multiplication	$3 *$ for $3 t$	$\sin (\mathrm{x})$	for	$\sin x$
		abs (x)	for	$\|x\|$
powers	$\mathrm{x} \wedge 2$ for x^{2}	$\cos (\mathrm{x})$	for	$\cos x$
		sqrt (x)	for	\sqrt{x}
number π	Pi	$\tan (\mathrm{x})$	for	$\tan x$
		$\ln (\mathrm{x})$	for	$\ln x$
Greek letter π	pi	$\exp (\mathrm{x})$	for	e^{x}

Maple can be used to plot direction fields and solution curves. You must load the DEtools package once on each worksheet:

$$
>\text { with(DEtools): }
$$

Note the colon will supress any output from Maple, whereas a semicolon will not.
Example 1. $\frac{d y}{d x}=-y$.
Assign the differential equation the name de for easy handling and to avoid trouble, always type the dependent variable y as $y(x)$.

$$
\begin{aligned}
& >\operatorname{de}:=\operatorname{diff}(y(x), x)=-y(x) ; \\
& >\text { DEplot }(\operatorname{de}, y(x), x=-3 . .3, y=-3 . .3) ;
\end{aligned}
$$

To plot the direction field and solution curves, for example the solutions satisfying $y(1)=2$, $y(-1)=-1$ and $y(1)=1$, proceed as follows:
$>$ inits: $=[[1,2],[-1,-1],[1,1]] ;$
Here we're telling Maple the initial conditions in the appropriate form. Always be sure to enclose the list in square brackets.
$>$ DEplot(de, $y(x), x=-3.3$, inits, $y=-3 . .3)$;
You might need to play around with the x and y plot ranges to get a good plot.
If you just want a plot of the solution curves, include the arrows=none option:
$>$ DEplot(de, $y(x), x=-3 . .3$, inits, $y=-3 . .3$,arrows=none);

NOTES

1. For good printouts, include the option linecolor=black to make the solution curves black.
2. If your solution curves appear jagged, include the option stepsize $=h$, where you choose h by trial and error to get a good plot. For instance, try .1, . $05, .01$ etc. Please note on exam, your solution will lose credit if your solution curves appear jagged. Place the option after the y range.
3. To resize Maple's plots, click on the graph and drag the corners with the mouse.
4. Use the initial conditions to help you pick the x and y plot ranges. For instance, if $y(-3)=-1$, use $\mathrm{x}=-6 . .0, \mathrm{y}=-4 . .2$ as a starting point and play around from there if necessary.
5. The command restart: will clear all values of variables. It's a good thing to try when things go wrong.
6. To type text in a Maple worksheet, hit the button with the T on it. To restore the Maple prompt, hit the button with the [$>$ on it.

Example 2. $\frac{d y}{d x}=\sin (y)$. Plot the direction field using Maple. What happens to the solution satisfying

1. $y(0)=1$ as $x \rightarrow \infty$.
2. $y(2)=-2$ as $x \rightarrow \infty$.
3. $y(0)=7$ as $x \rightarrow \infty$.

Example 3. The population $p(t)$ in thousands of a certain species satisfies the differential equation $\frac{d p}{d t}=3 p-2 p^{2}$. Use Maple to sketch the direction field and use it to answer the following questions.

1. If the initial population is 2000 individuals (i.e., $p(0)=2$), what is the limiting population?
2. If the initial population is 500 individuals, what is the limiting population?
3. Can a population of 3000 individuals ever decline to 500 individuals?

Example 4. For a bar magnet, the magnetic field lines satisfy the differential equation $\frac{d y}{d x}=\frac{3 x y}{2 x^{2}-y^{2}}$. Plot the direction field. Does it remind you of anything?

Homework

Text: page $22 / 4,7,10$ Use Maple on all these.
Lab Book: page 25/1b, 3c, 8, 10b

