MATH 308 Sheet 1

Some syntax trouble spots:

multiplication	3*t for 3 <i>t</i>	sin(x)	for	$\sin x$
		abs(x)	for	x
powers	$x \land 2$ for x^2	cos(x)	for	$\cos x$
		sqrt(x)	for	\sqrt{x}
number π	Pi	tan(x)	for	$\tan x$
		ln(x)	for	$\ln x$
Greek letter π	pi	exp(x)	for	e^x

Maple can be used to plot direction fields and solution curves. You must load the DEtools package once on each worksheet:

> with(DEtools):

Note the colon will supress any output from Maple, whereas a semicolon will not.

Example 1.
$$\frac{dy}{dx} = -y$$
.

Assign the differential equation the name de for easy handling and to avoid trouble, always type the dependent variable y as y(x).

$$> de:=diff(y(x),x)=-y(x);$$

> DEplot(de,y(x),x=-3..3,y=-3..3);

To plot the direction field and solution curves, for example the solutions satisfying y(1) = 2, y(-1) = -1 and y(1) = 1, proceed as follows:

> inits:=[[1,2],[-1,-1],[1,1]];

Here we're telling Maple the initial conditions in the appropriate form. Always be sure to enclose the list in square brackets.

> DEplot(de,y(x),x=-3..3,inits,y=-3..3);

You might need to play around with the x and y plot ranges to get a good plot.

If you just want a plot of the solution curves, include the **arrows=none** option:

> DEplot(de,y(x),x=-3..3,inits,y=-3..3,arrows=none);

NOTES

- 1. For good printouts, include the option $\mathsf{linecolor}{=}\mathsf{black}$ to make the solution curves black.
- 2. If your solution curves appear jagged, include the option stepsize=h, where you choose h by trial and error to get a good plot. For instance, try .1, .05, .01 etc. Please note on exam, your solution will lose credit if your solution curves appear jagged. Place the option after the y range.

- 3. To resize Maple's plots, click on the graph and drag the corners with the mouse.
- 4. Use the initial conditions to help you pick the x and y plot ranges. For instance, if y(-3) = -1, use x=-6..0, y=-4..2 as a starting point and play around from there if necessary.
- 5. The command **restart**: will clear all values of variables. It's a good thing to try when things go wrong.
- 6. To type text in a Maple worksheet, hit the button with the T on it. To restore the Maple prompt, hit the button with the [> on it.

Example 2. $\frac{dy}{dx} = \sin(y)$. Plot the direction field using Maple. What happens to the solution satisfying

- 1. y(0) = 1 as $x \to \infty$.
- 2. y(2) = -2 as $x \to \infty$.
- 3. y(0) = 7 as $x \to \infty$.

Example 3. The population p(t) in thousands of a certain species satisfies the differential equation $\frac{dp}{dt} = 3p - 2p^2$. Use Maple to sketch the direction field and use it to answer the following questions.

- 1. If the initial population is 2000 individuals (i.e., p(0) = 2), what is the limiting population?
- 2. If the initial population is 500 individuals, what is the limiting population?
- 3. Can a population of 3000 individuals ever decline to 500 individuals?

Example 4. For a bar magnet, the magnetic field lines satisfy the differential equation $\frac{dy}{dx} = \frac{3xy}{2x^2 - y^2}$. Plot the direction field. Does it remind you of anything?

Homework

Text: page 22/4, 7, 10 Use Maple on all these.

Lab Book: page 25/1b, 3c, 8, 10b