MATH 308 Sheet 2

We have to iterate the algorithm that realizes an Euler's method to construct approximations to the solution of the initial value problem for first-order differential equation:

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

As you know, an Euler's method can be summarized by the recursive formulas

$$
\begin{gathered}
x_{n+1}:=x_{0}+(n+1) h \\
y_{n+1}:=y_{n}+f\left(x_{n}, y_{n}\right)\left(x-x_{n}\right), \quad n=0,1,2, \ldots
\end{gathered}
$$

Lets construct numerical approximations to the initial value problem

$$
\frac{d y}{d x}=\frac{1}{x^{2}}-\frac{y}{x}-y^{2}, \quad y(1)=1
$$

on the interval $1<x<2$.
To iterate this algorithm, we use the for k from start to finish do..od construction. The following sequence of Maple commands performs ten iterations of this procedure with step $h=0.1$ and therefore computes approximate values at the points $x=1,1.1,1.2, \ldots 1.9,2.0$. These values are contained in a sequence of points named eseq.

$$
\begin{aligned}
>\mathrm{f}:=(\mathrm{x}, \mathrm{y})->1 / \mathrm{x}^{\wedge} 2-\mathrm{y} / \mathrm{x}-\mathrm{y}^{\wedge} 2 ; \text { inits }: & =\mathrm{y}(1)=1 \\
& ; \\
\qquad:= & (x, y) \rightarrow \frac{1}{x^{2}}-\frac{y}{x}-y^{2} \\
& \text { inits }:=y(1)=1
\end{aligned}
$$

Notice, that the function above is an arrow-defined function an not a Maple expression.
$>\mathrm{x}:=1: \mathrm{y}:=1: \mathrm{h}:=0.1$: \# initialize x and y an the step size
$>$ eseq: $=[x, y] ;$ \# input the initial conditions into eseq

$$
\text { eseq }:=[1,1]
$$

$>$ for i from 1 to 10 do
$y:=\operatorname{evalf}\left(y+h^{*} f(x, y)\right)$: \# compute the new value of y
$\mathrm{x}:=\mathrm{x}+\mathrm{h}$: \# update the new value of x
eseq:=eseq, $[\mathrm{x}, \mathrm{y}]$: \# ad the new point
od:
$>x:=' x$ ': $y:=' y$ ': $h:={ }^{\prime} h^{\prime}:$
To display the contest of the solution values in eseq, type the variable name.
$>$ eseq;
[1, 1], [1.1, .9], [1.2, .8198264463], [1.3, .7537404800], [1.4, .6981195696], [1.5, .6505372009], [1.6, .6092926336], [1.7, .5731505927], [1.8, .5411877679], [1.9, .5126975583], [2.0, .4871284287]

To plot the approximation between $x=1$ and $x=2$, we could use plot([eseq]);.

1. Use Euler's method to find approximations to the solution of the initial value problem

$$
y^{\prime}=1-\sin y, \quad y(0)=0
$$

taking 10 steps.
2. Use Euler's method to find approximations to the solution of the initial value problem

$$
y^{\prime}=1+x^{2}, \quad y(0)=0,
$$

taking 10 steps.

