MATH 308 Sheet 3

Maple can be used to solve differential equations and initial value problems. The key commands are dsolve, subs, rhs, simplify, evalf, and fsolve.
Example 1. $x y^{\prime}+(x+1) y=1$.
Assign the differential equation the name de for easy handling and remember to type the dependent variable y as $y(x)$.
$>\operatorname{de}:=x * \operatorname{diff}(y(x), x)+(x+1) * y(x)=1 ;$
Now tell Maple to solve the differential equation and assign the variable name sol to the solution. Notice the strange way Maple writes the constant of integration as _C1.

$$
>\text { sol:=dsolve(de,y(x)); }
$$

Notice the variable sol is actually an equation: To see this, type in
> sol;
To have Maple manipulate the solution, we need to make Maple ignore the " $y(x)=$ " part. The way to do this is via the rhs command:

$$
>\text { rhs(sol); }
$$

For example, to have Maple check its work:

$$
>\operatorname{subs}(y(x)=\text { rhs(sol), de }) ;
$$

This makes Maple plug its solution into the differential equation. Now expand and clean up (note the $\%$ sign tells Maple to plug in whatever is on the previous line for the $\%$ sign):
$>$ simplify (\%);
If all is well, this should give some kind of identity.
Example 2. Use the same differential equation, but now include the initial condition $y(2)=1$. You already told Maple the differential equation, so you don't have to enter it again. Take note of how to enter the initial condition.
$>$ sol:=dsolve $(\{\operatorname{de}, y(2)=1\}, y(x))$;
Sometimes it is necessary to "clean up" the solution. Here's one way:

```
> sol:=simplify(sol);
```

Check the solution as before and then check the initial condition as follows:
$>\operatorname{subs}(\mathrm{x}=2, \mathrm{rhs}(\mathrm{sol}))$;
$>$ simplify(\%);
To plot the solution (notice the color is changed via the color=black option in contrast to linecolor=black for DEplot):

$$
>\operatorname{plot}(\text { rhs }(\text { sol }), x=0.5 . .5, \text { color=black }) ;
$$

You can restrict the y range by including the $y=a . . b$ option, if necessary.
$>\operatorname{plot}(\mathrm{rhs}(\mathrm{sol}), x=0 . .5, y=0 . .50$, color=black);
(What happens if you don't include the $\mathrm{y}=0 . .50$ option in the preceeding line?)
a) Find the x value for which the solution has value 2. That is, solve the equation $y(x)=2$ for x. Here's how to do it. First tell Maple the equation you want to solve:

$$
>\text { eq: }=\text { rhs }(\mathrm{sol})=2
$$

Now tell Maple to find the x value:

$$
>\text { fsolve(eq,x); }
$$

b) Compute the value of $y(2 / 3)$. The first line tells Maple to plug in $x=2 / 3$ to the solution and the next line tells it to compute the value.

```
> subs(x=2/3,rhs(sol));
> evalf(%);
```

c) Find the positive x value for which $y^{\prime}(x)=-2$.

First have Maple compute the derivative and assign it to the variable der for easy handling:

$$
>\operatorname{der}:=\operatorname{diff}(\text { rhs }(\mathrm{sol}), \mathrm{x}) ;
$$

Enter the equation $y^{\prime}=-2$:

$$
>\text { eq:=der=-2; }
$$

Now solve the equation:

$$
>\text { fsolve(eq,x); }
$$

Note this gives the wrong value: it's negative. So get the right root, restrict Maple's attention in the fsolve statement by using the option $\mathrm{x}=\mathrm{a} . . \mathrm{b}$. Use the graph of y to help determine a and b.

$$
>\text { fsolve(eq, } x=0 \text {..infinity) }
$$

You could have also used $x=0 . .4$.
Example 3. Use dsolve to solve the initial value problem $x^{2} y^{\prime}+x y=\sin x, \quad y(1)=1$.
a) Plot the solution.
b) Compute $y(3) / 4$.
c) Find $x>0$ for which $y^{\prime}(x)=-1$.
d) Find $x>0$ for which $y^{\prime}(x)=1$.

