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Chapter I Introduction

Section 1.1 Background

Definition Equation that contains some derivatives of an unknown function is called a
differential equation.

Definition A differential equation involving only ordinary derivatives with respect to a sin-
gle variable is called an ordinary differential equations or ODE. A differential equation involving
partial derivatives with respect to more then one variable is a partial differential equations or
PDE.

Definition The order of a differential equation is the order of the highest-order derivatives
present in equation.

Definition An ODE is linear if it has format

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ a1(x)

dy

dx
+ a0(x)y = F (x),

where an(x), an−1(x),...,a0(x) and F (x) depend only on variable x. If an ODE is not linear,
then we call it nonlinear.

Section 1.2 Solutions and Initial Value Problems

A general form for an nth-order equation with variable x and unknown function y = y(x)
can be expressed as

F

(

x, y,
dy

dx
, · · · ,

dny

dxn

)

= 0,

where F is a function that depends on x, y, and the derivatives of y up to the order n. We
assume that the equation holds for all x in an open interval I (a < x < b, where a or b could
be infinite). In many cases we can isolate the highest-order term dny/dxn and write equation
(1) as

dny

dxn
= f

(

x, y,
dy

dx
, · · · ,

dn−1y

dxn−1

)

= 0.

Definition. A function ϕ(x) that when substituted by y in equation (1) or (2) satisfies
the equation for all x in the interval I is called an explicit solution to the equation on I.

Definition. A relation G(x, y) = 0 is said to be an implicit solution to equation (1) on
the interval I if it defines one or more explicit solutions on I.

Definition. By an initial value problem for an nth-order differential equation



F

(

x, y,
dy

dx
, · · · ,

dny

dxn

)

= 0

we mean: Find a solution to the differential equation on an interval I that satisfies at x0

the n initial conditions:

y(x0) = y0,

dy

dx
(x0) = y1,

...

dn−1y

dxn−1
(x0) = yn−1,

where x0 ∈ I and y0, y1,...,yn−1 are given constants.

In case of a first-order equation F
(

x, y, dy
dx

)

, the initial conditions reduce to the single
requirement

y(x0) = y0,

and in the case of a second-order equation, the initial conditions have the form

y(x0) = y0,
dy

dx
= y1.

Theorem. Given the initial value problem

dy

dx
= f(x, y), y(0) = y0,

assume that f and ∂f/∂y are continuous functions in a rectangle

R = {(x, y) : a < x < b, c < y < d}
that contains the point (x0, y0). Then the initial value problem has a unique solution ϕ(x)

in some interval x0 − δ < x < x0 + δ, where δ is a positive number.

Chapter 2. First-Order Differential Equations

Section 2.2 Separable Equations

dy

dx
= f(x, y)

Sometimes function f(x, y) can be represented as a product of two functions, one of which
depends ONLY on x, another depends ONLY on y, or f(x, y) = g(x)h(y). Then

dy

dx
= g(x)h(y).



dy

h(y)
= g(x)dx,

∫

dy

h(y)
=

∫

g(x)dx,

Thus, the solution to an equation is

H(y) = G(x) + C,

here H(y) is an antiderivative of 1/h(y), G(x) is an antiderivative of g(x), C is a constant.

Section 2.3 Linear Equations

A linear first-order equation is an equation that can be expressed in the form

a1(x)
dy

dx
+ a0(x)y = b(x),

where a0(x), a1(x), b(x) depend only on x.
We will assume that a0(x), a1(x), b(x) are continuous functions of x on an interval I. We

are interested in those linear equations for which a1(x) is never zero on I. In that case we can
rewrite linear equation in the standard form

dy

dx
+ P (x)y = Q(x),

where P (x) = a0(x)/a1(x) and Q(x) = b(x)/a1(x) are continuous on I.
There are two methods of solving linear first-order differential equations.

Method 1 for solving linear equations

(a) Write the equation in the standard form dy
dx

+ P (x)y = Q(x).

(b) Find the integrating factor µ(x) solving differential equation

dµ

dx
− P (x)µ = 0.

(c) Integrate the equation

d

dx
[µy] = µQ(x)

and solve for y by dividing by µ(x).

Method 2 (variation of parameter) for solving linear equations

(a) Write the equation in the standard form dy
dx

+ P (x)y = Q(x).

(b) Write the corresponding homogeneous equation

y′ + P (x)y = 0,

which is obtained from dy
dx

+ P (x)y = Q(x) by replacing Q(x) with zero.



(c) Find the solution to the homogeneous equation

yhom(x) = C exp

[

−
∫

P (x)dx

]

,

(d) Write the solution to the nonhomogeneous equation

y(x) = C(x) exp

[

−
∫

P (x)dx

]

,

where C(x) is an unknown function.

(e) Find C(x) integrating the equation

C ′(x) = Q(x) exp

[
∫

P (x)dx

]

.

(f) Substitute C(x) into y(x) = C(x) exp
[

−
∫

P (x)dx
]

.

Existence and uniqueness of solution

Theorem. Suppose P (x) and Q(x) are continuous on some interval I that contains the
point x0. Then for any choice of initial value y0, there exists a unique solution y(x) on I to the
initial value problem

y′ + P (x)y = Q(x), y(x0) = y0.

Chapter 3. Mathematical models and numerical methods involving first-order
equations

Section 3.2 Compartmental analysis

Mixing problem.

A brine solution of salt flows at a constant rate of a L/min into a large tank that initially
held A L of brine solution in which was dissolved b kg of salt. The solution inside the tank is
kept well stirred and flows out of the tank at the rate c L/min. If the concentration of salt in
the brine entering the tank is d kg/L, determine the mass of salt in the tank after t min.

SOLUTION. Let x(t) denote the mass of salt in the tank at time t, we can determine the
concentration of salt in the tank by dividing x(t) by the volume of fluid in the tank at time t.

First, we must determine the rate at which salt enters the tank. We are given that brine
flows into the tank at a rate of a L/min. Since the concentration is b kg/L, we conclude that
the input rate of salt into the tank is

ab kg/min

We must now determine the output rate of salt from the tank. The brine solution in the
tank is well stirred, so let’s assume that the concentration of salt in the tank is uniform. So,
the concentration of salt in any part of the tank at time t is just x(t) divided by the volume of
fluid in the tank. The output rate is

cx(t)

A + (c − a)t
kg/min



The tank initially contains d kg of salt, so we set x(0) = d. The initial value problem

dx

dt
= input rate − output rate = ab − cx(t)

A + (c − a)t
, x(0) = d,

is a mathematical model for the mixing problem.

Population models

If we assume that the people die only of natural causes, we might expect the death rate also
to be proportional to the size of the population. So,

dp

dt
= k1p − k2p = (k1 − k2)p = kp,

where k = k1 − k2 and k2 is the proportionality constant for the death rate. Let’s assume
that k1 > k2 so that k > 0. This gives the mathematical model

dp

dt
= kp, p(0) = p0,

which is called the Malthusian or exponential, law of population growth.
The solution to this initial value problem is

p(t) = p0e
kt.

What about premature death? We might assume that another component of the death
is proportional to the number of two-party interactions. There are p(p − 1)/2 such possible
interactions for a population of size p. Thus, if we combine the birth rate with the death rate
and rearrange constants, we get the logistic model

dp

dt
= −Ap(p − p1), p(0) = p0,

where A = k3/2 and p1 = (2k1/k3) + 1.
The function p(t) is called the logistic function.

Section 3.3 Heating and cooling of buildings.

Let T (t) represent the temperature inside the building at time t and view the building as a
single compartment.

We will consider three main factors that affect the temperature inside the building. First
is the heat produced by people, lights, and machines inside the building. This causes a rate
of increase in temperature that we will denote by H(t). Second is the heating (or cooling)
supplied by the furnace (or air conditioner). This rate of increase (or decrease) in temperature
will be represented by U(t). The third factor is the effect of the outside temperature M(t)
on the temperature inside the building. Third factor can be modeled using Newtons law of
cooling. This law states that

dT

dt
= K(M(t) − T (t)).

The positive constant K depends on the physical properties of the building, K does not
depend on M , T or t.



Summarizing, we have

dT

dt
= K(M(t) − T (t)) + U(t) + H(t),

where H(t) ≥ 0 and U(t) > 0 for furnace heating and U(t) < 0 for air conditioning cooling.

Section 3.4 Newtonian mechanics

Procedure for Newtonian models

(a) Determine all relevant forces acting on the object being studied. It is helpful to draw
a simple diagram of the object that depicts these forces.

(b) Choose an appropriate axis or coordinate system in which to represent the motion of
the object and the forces acting on it.

(c) Apply Newton’s second law to determine the equations of motion for the object.

You have to remember that the gravitational acceleration is approximately equal in the U.S.
Customary System g = 32 ft/sec2, and in the meter-kilogram-second system g = 9.81 m/sec2.

An object of mass m is given an initial downward velocity v0 and allowed to fall under
the influence of gravity. Assuming the gravitational force is constant and the force due to air
resistance is proportional to the velocity of the object, determine the equation of motion for
this body.

SOLUTION. Two forces are acting on the object: a constant force due to downward pull
of gravity and force due to air resistance that is proportional to the velocity of the object and
acts in opposition to the motion of the object. Hence, the motion of the object will take place
along a vertical axis. On this axis we choose the origin to be the point where the object was
initially dropped and let x(t) denote the distance the object has fallen in time t.

The force due to gravity is
F1 = mg,

where g is the acceleration due to gravity an Earth’s surface. The force of air resistance is

F2 = −bv(t),

where b > 0 is the proportionality constant. The net force acting on the object is

F = F1 + F2 = mg − bv(t).

We now apply Newton’s second law:

m
dv

dt
= mg − bv(t).

Since, the initial velocity of the object is v0, a model for the velocity of the falling body is
expressed by the initial value problem

m
dv

dt
= mg − bv(t), v(0) = v0,

where g and b are positive constant.
Hence, the equation of the motion is

x(t) =
mg

b
t +

m

b

(

v0 −
mg

b

)

(1 − e−
b

m
t).



Chapter 4. Linear Second Order Equations
Section 4.2 Linear Differential Operators

A linear second order equation is an equation that can be written in the form

a2(x)
d2y

dx2
+ a1(x)

dy

dx
+ a0(x)y = b(x).

We will assume that a0(x), a1(x), a2(x), b(x) are continuous functions of x on an interval I.
When a0, a1, a2, b are constants, we say the equation has constant coefficients, otherwise it
has variable coefficients. We are interested in those linear equations for which a2(x) is never
zero on I. In that case we can rewrite linear second-order equation in the standard form

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = g(x), (1)

where p(x) = a1(x)/a2(x), q(x) = a0(x)/a2(x) and g(x) = b(x)/a2(x) are continuous on I.
Associated with equation (1) is the equation

y′′ + p(x)y′ + q(x)y = 0, (2)

which is obtained from (1) by replacing g(x) with zero. We say that equation (1) is a
nonhomogeneous equation and that (2) is the corresponding homogeneous equation.

Given any function y with a continuous second derivative on the interval I, then y′′+p(x)y′+
q(x)y generates a new function

L[y] = y′′(x) + p(x)y′(x) + q(x)y(x).

What we have done is to associate with each function y the function L[y]. This function
L is defined on a set of functions. Its domain is the collection of functions with continuous
second derivatives. We will call these mappings operators. Because L involves differentiation,
we refer to L as a differential operator.

The image of a function t under the operator L is the function L[y]. If we want to evaluate
this image function at some point x, we write L[y](x).

Lemma Let L[x] = y′′(x)+p(x)y′(x)+q(x)y(x). If y, y1, and y2 are any twice-differentiable
functions on the interval I and if c is any constant, then

L[y1 + y2] = L[y1] + L[y2],

L[cy] = cL[y].

Any operator that satisfied satisfies both properties from Lemma for any constant c and
any functions y, y1, and y2 in its domain is called a linear operator and we can say that ”L

preserves linear combination”. If properties fails to hold, the operator is nonlinear.
Lemma says that the operator L = y′′(x) + p(x)y′(x) + q(x)y(x) is linear.
Theorem (linear combination of solutions). Let y1 and y2 be solutions to the homo-

geneous equation. Then any linear combination C1y1 + C2y2 of y1 and y2, where C1 and C2 are
constants, is also the solution to (2).

Theorem (existence and uniqueness of solution). Suppose p(x), q(x), and g(x) are
continuous on some interval (a, b) that contains the point x0. Then, for any choice of initial



values y0, y1 there exists a unique solution y(x) on the whole interval (a, b) to the initial value
problem

y′′ + p(x)y′ + q(x)y = g(x),

y(x0) = y0, y′(0) = y1.

Section 4.3. Fundamental solutions of homogeneous equations

Theorem. Let y1 and y2 denote two solutions on I to

y′′ + p(x)y′ + q(x)y = 0,

Suppose at some point x0 ∈ I these solutions satisfy

y1(x0)y
′
2(x0) − y′

1(x0)y2(x0) 6= 0.

Then every solution to (2) on I can be expressed in the form

y(x) = C1y1(x) + C2y2(x),

where C1 and C2 are constants.

Definition. For any two differentiable functions y1 and y2, the determinant

W [y1, y2](x) =

∣

∣

∣

∣

y1(x) y2(x)
y′

1(x) y′
2(x)

∣

∣

∣

∣

= y1(x)y′
2(x) − y′

1(x)y2(x)

is called the Wronskian of y1 and y2.

Definition. A pair of solutions {y1, y2} to y′′ + p(x)y′ + q(x)y = 0 on I is called funda-
mental solution set if

W [y1, y2](x0) 6= 0

at some x0 ∈ I.

Procedure for solving homogeneous equations
To determine all solutions to y′′ + p(x)y′ + q(x)y = 0:
(a) Find two solutions y1 and y2 that constitute a fundamental solution set.
(b) Form the linear combination

y(x) = C1y1(x) + C2y2(x),

to obtain the general solution.

Definition. Two functions y1 and y2 are said to be linearly dependent on I if there
exist constants C1 and C2, not both zero, such that

C1y1(x) + C2y2(x) = 0



for all x ∈ I. If two functions are not linearly dependent, they are said to be linearly
independent.

Theorem. Let y1 and y2 be solutions to the equation y′′ + p(x)y′ + q(x)y = 0 on I, and let
x0 ∈ I. Then y1 and y2 are linearly dependent on I if and only if the constant vectors

(

y1(x0)
y′

1(x0)

)

and

(

y2(x0)
y′

2(x0)

)

are linearly dependent.

Corollary. If y1 and y2 are solutions to y′′ + p(x)y′ + q(x)y = 0 on I, then the following
statements are equivalent:

(i) {y1, y2} is a fundamental solution set on I.
(ii) y1 and y2 are linearly independent on I.
(iii) W [y1, y2] is never zero on I.

Another representation of the Wronskian for two solutions y1(x) and y2(x) to the equation
y′′ + py′ + qy = 0 on (a, b) is Abel’s identity:

W [y1, y2](x) = C exp

[

−
∫ x

x0

p(t)dt

]

,

where x0 ∈ (a, b) and C is a constant that depends on y1 and y2.

Section 4.4 Reduction of Order

A general solution to a linear second order homogeneous equation is given by a linear
combination of two linearly independent solutions.

Let f be nontrivial solution to equation

y′′ + p(x)y′ + q(x)y = 0.

Let’s try to find solution of the form

y(x) = v(x)f(x),

where v(x) is an unknown function. Differentiating, we have

y′ = v′f + vf ′,

y′′ = v′′f + 2v′f ′ + vf ′′.

Substituting these expression into equation gives

v′′f + 2v′f ′ + vf ′′ + p(v′f + vf ′) + qvf = 0

or
fv′′ + (2f ′ + pf)v′ = 0.

Let’s w(x) = v′(x), then we have

fw′ + (2f ′ + pf)w = 0,



separating the variables and integrating gives

w = ±e−
R

pdx

f 2
,

which holds on any interval where f(x) 6= 0.

v′ = ±e−
R

pdx

f 2
,

v = ±
∫

e−
R

p(x)dx

[f(x)]2
.

Section 4.5 Homogeneous Linear Equations with Constant Coefficients

For the equation

ay′′ + by′ + cy = 0, (3)

where a, b, c are constants.

(ar2 + br + c)erx = 0.

The associated auxiliary equation is

ar2 + br + c = 0.

When
√

b2 − 4ac > 0, the auxiliary equation has two different real roots

r1 =
−b +

√
b2 − 4ac

2a
, r2 =

−b −
√

b2 − 4ac

2a
,

So, y1(x) = er1x and y2(x) = er2x are two linearly independent solutions to (3) and

y(x) = c1e
r1x + c2e

r2x

is the general solution to (3).

If
√

b2 − 4ac = 0, then the auxiliary equation has a repeated root r ∈ R, r = − b
2a

. In this
case, y1(x) = erx and y2(x) = xerx are two linearly independent solutions to (3) and

y(x) = c1e
rx + c2xerx = (c1 + c2x)erx

is the general solution to (3).

Section 4.6 Auxiliary Equation with Complex Roots



Complex conjugate roots.
If the auxiliary equation has complex conjugate roots α± iβ, then two linearly independent

solutions to (3) are eαx cos βx and eαx sin βx and a general solution is

y(x) = c1e
αx cos βx + c2e

αx sin βx,

where c1 and c2 are arbitrary constants.

Section 4.7 Superposition and nonhomogeneous equations

Theorem (representation of solutions for nonhomogeneous equations). Let yp(x)
be particular solution to the nonhomogeneous equation

y′′ + p(x)y′ + q(x)y = g(x) (4)

on the interval (a, b) and let y1(x) and y2(x) be linearly independent solutions on (a, b) of
the corresponding homogeneous equation

y′′ + p(x)y′ + q(x)y = 0.

Then a general solution of (4) on the interval (a, b) can be expressed in form

y(x) = yp(x) + c1y1(x) + c2y2(x). (5)

Procedure for solving solving nonhomogeneous equations.
To solve y′′ + p(x)y′ + q(x)y = g(x):
(a) Determine the general solution c1y1(x) + c2y2(x) of the corresponding homogeneous

equation.
(b) Find the particular solution yp(x) of the given nonhomogeneous equation.
(c) Form the sum of the particular solution and a general solution to the homogeneous

equation

y(x) = yp(x) + c1y1(x) + c2y2(x),

to obtain the general solution to the given equation.

Section 4.8 Method of Undetermined Coefficients

We give a simple procedure for finding a particular solution to the equation

ay′′ + by′ + cy = g(x),

when the nonhomogeneous term g(x) is of a special form

g(x) = eαx(Pm1
(x) cos βx + Qm2

(x) sin βx),

where

Pm1
(x) = p0x

m1 + p1x
m1−1 + p2x

m1−2 + . . . + pm1−1x + pm1



is a polynomial of degree m1 and

Qm2
(x) = q0x

m2 + q1x
m2−1 + q2x

m2−2 + . . . + qm2−1x + qm2

is a polynomial of degree m2, α, β ∈ R.

To apply the method of undetermined coefficients, we first have to solve the auxiliary
equation for the corresponding homogeneous equation

ar2 + br + c = 0

.

Particular solutions to ay′′ + by′ + cy = g(x)

Type g(x) yp(x)
(I) p0x

m1 + p1x
m1−1 + . . . + pm1

xs(Axm1 + Bxm1−1 + . . . + Dx + F )
(II) deαx xsAeαx

(III) eαx(p0x
m1 + p1x

m1−1 + . . . + pm1
) xseαx(Axm1 + Bxm1−1 + . . . + Dx + F )

(IV) d cos βx + f sin βx xs(A cos βx + B sin βx)
(V) (p0x

m1 + p1x
m1−1 + . . . + pm1

) cosβx+ xs{(A0x
m + A1x

m−1 + . . . + Am) cos βx+
+(q0x

m2 + q1x
m2−1 + . . . + qm2

) sin βx +(B0x
m + B1x

m−1 + . . . + Bm) sin βx}
(VI) eαx(d cosβx + f sin βx) xseαx(A cos βx + B sin βx)
(VII) eαx[(p0x

m1 + p1x
m1−1 + . . . + pm1

) cos βx+ xseαx[(A0x
m + A1x

m−1 + . . . + Am) cosβx+
+(q0x

m2 + q1x
m2−1 + . . . + qm2

) sin βx] +(B0x
m + B1x

m−1 + . . . + Bm) sin βx]

In this table s = 0, when α + iβ is not a root to the auxiliary equation, s = 1, when α + iβ
is one of two roots to the auxiliary equation, and s = 0, when β = 0 and α is a repeated root
to the auxiliary equation; m = max{m1, m2}.

Section 4.9 Variation of Parameters

Consider the nonhomogeneous linear second order differential equation

y′′ + p(x)y′ + q(x)y = g(x). (6)

Let {y1(x), y2(x)} be a fundamental solution set to the corresponding homogeneous equation

y′′ + p(x)y′ + q(x)y = 0.

The general solution to this homogeneous equation is yh(x) = c1y1(x) + c2y2(x), where c1

and c2 are constants. To find a particular solution to (6) we assume that c1 = c1(x) and
c2 = c2(x) are functions of x and we seek a particular solution yp(x) in form

yp(x) = c1(x)y1(x) + c2(x)y2(x).

To summarize, we can find c1(x) and c2(x) solving the system

{

c′1(x)y1(x) + c′2(x)y2(x) = 0
c′1(x)y′

1(x) + c′2(x)y′
2(x) = g(x)

for c′1(x) and c′2(x). Cramer’s rule gives



c′1(x) =
−g(x)y2(x)

W [y1, y2](x)
, c′2(x) =

g(x)y1(x)

W [y1, y2](x)
.

Then

c1(x) =

∫ −g(x)y2(x)

W [y1, y2](x)
dx, c2(x) =

∫

g(x)y1(x)

W [y1, y2](x)
dx.

Section 4.11 A closer look at free mechanical vibrations

A dumped mass-spring oscillator consists of a mass m attached to a spring fixed at one end.
Model for the motion of the mass is expressed by the initial value problem

my′′ + by′ + ky = Fexternal, y(0) = y0, y′(0) = v0,

where m is a mass, b is the dumping coefficient, k is the stiffness.

Undumped free case: b = Fexternal = 0

The equation reduces to
my′′ + ky = 0

or
y′′ + ω2y = 0,

where ω =
√

k
m

. The solution of this equation is

y(t) = C1 cos ωt + C2 sin ωt

or
y(t) = A sin ωt + φ,

where A =
√

C2
1 + C2

2 , tanφ = C1

C2

.

The motion is periodic with
period 2π/ω
natural frequency ω/2π
angular frequency ω
amplitude A.

Underdumped or oscillatory motion (b2 < 4mk)
The solution to the equation

my′′ + by′ + ky = 0

is
y(t) = eαt(C1 cos βt + C2 sin βt) = A sin βt + φ,

where
α = − b

2m
, β = 1

2m

√
4mk − b2, A =

√

C2
1 + C2

2 , tan φ = C1

C2

.

Overdumped motion (b2 > 4mk)



The solution to the equation
my′′ + by′ + ky = 0

is
y(t) = c1e

r1t + c2e
r2t,

where r1 = − b
2m

+ 1
2m

√
4mk − b2, r1 = − b

2m
− 1

2m

√
4mk − b2

Critically dumped motion (b2 = 4mk)
The solution to the equation

my′′ + by′ + ky = 0

is
y(t) = (c1 + c2t)e

− b

2m
t.

Section 4.12 A closer look at forced mechanical vibrations

Let’s investigate the effect of a cosine forcing function on the system governed by the
differential equation

my′′ + by′ + ky = F0 cos γt,

where F0, γ are nonnegative constants and b2 < 4mk.
The general solution to this equation is

y(t) = Ae−(b/2m)t sin

(
√

4mk − b2

2m
t + φ

)

+
F0

√

(k − mγ2)2 + b2γ2
sin(γt + θ),

where A, φ are constants and tan θ = k−mγ2

bγ
.

When the mass-spring system is hung vertically, the gravitational force can be ignored if
y(t) is measured from the equilibrium position. The equation of motion for this system is

my′′ + by′ + ky = Fexternal,

where m is a mass, b is the dumping coefficient, k is the stiffness.

Chapter 5. Introduction to systems and phase plane analysis
Section 5.1 Interconnected fluid tanks

Two large tanks each holding m L of liquid, are interconnected by pipes, with the liquid
flowing from tank A into tank B at a rate of a L/min and from B to A at a rate of b L/min.
The liquid inside each tank is kept well stirred. A brine solution with a concentration of c kg/L
of salt flows into tank A at a rate of d L/min. The solution flows out of the system, from tank
A at e L/min and from tank B at f L/min. Initially, tank A contains g kg of salt and tank B
contains h kg of salt. Determine the mass of salt at each tank at time t > 0.

SOLUTION. Let x(t) be the mass of salt in tank A and y(t) be the mass of salt in tank B.
The salt concentration in tank A is x(t)/m kg/L and in tank B is y(t)/m.

For tank A
dx

dt
= input rate − output rate.



input rate = cd +
dy(t)

m

output rate =
ax(t)

m
+

ex(t)

m
Thus,

dx

dt
= cd + d

y

m
− (a + e)

x

m

For tank B
dy

dt
= input rate − output rate.

input rate = a
x(t)

m

output rate =
by(t)

m
+

fy(t)

m
Thus,

dy

dt
= a

x

m
− (b + f)

y

m
.

The IVP
{

dx
dt

= cd + d
my − a + e

m x
dy
dt

= a
mx − b + f

m y

x(0) = g, y(0) = h

is a mathematical model for the mixing problem for the interconnected fluid tanks.

Section 5.2 Elimination method for systems with constant coefficients

Elimination procedure for 2×2 systems

To find a general solution to the system
{

dx
dt

= a1x(t) + a2y(t) + f1(t)
dy
dt

= b1x(t) + b2y(t) + f2(t)

(a) Solve the second equation in system for x(t) (or the first equation in system for y(t)).

x(t) =
1

b1
(y′ − b2y(t) − f2(t))

(b) Substitute the expression for x(t) (or for y(t)) into another equation.

1

b1
(y′′ − b2y

′ − f ′
2(t)) =

a1

b1
(y′ − b2y − f2(t)) + f1(t)

or

y′′ − (a1 + b2)y
′ + (a1b2 − a2b1)y = f ′

2(t) − a1f2(t) + b1f1(t) (7)

(c) Find the general solution to (7).

(d) Substitute y(t) into expression for x(t).



Chapter 7. Laplace transform.
Section 7.2 Definition of the Laplace Transform.

Definition Let f(x) be a function on [0,∞). The Laplace transform of f is the function
F defined by the integral

F (s) =

∞
∫

0

f(t)e−stdt.

The domain of F (s) is all the values of s for which integral exists. The Laplace transform
of f is denoted by both F and L{f}.

Notice, that integral in definition is improper integral.

∞
∫

0

f(t)e−stdt = lim
N→∞

N
∫

0

f(t)e−stdt

whenever the limit exists.

Table of Laplace transform

f(t) = L−1{F}(t) F (s) = L{f}(s)
1 1

s , s > 0

eat 1
s − a, s > a

tn, n = 1, 2, ... n!
sn+1 , s > 0

sin bt b
s2 + b2 , s > 0

cos bt s
s2 + b2 , s > 0

eattn, n = 1, 2, ... n!
(s − a)n+1 , s > a

eat sin bt b
(s − a)2 + b2 , s > a

eat cos bt s − a
(s − a)2 + b2 , s > a

u(t − a) e−as

s

Section 7.3 Properties of Laplace transform.

L{f + g} = L{f} + L{g}
L{cf} = cL{f} for any constant c
L{eatf}(s) = F (s − a)
L{f ′}(s) = sL{f}(s) − f(0)
L{f ′′}(s) = s2L{f}(s) − sf(0) − f ′(0)
L{f (n)}(s) = snL{f}(s) − sn−1f(0) − sn−2f ′(0) − . . . − f (n−1)(0)

L{tnf(t)}(s) = (−1)n dn

dsn (L{f(t)})(s)
L{g(t)u(t− a)}(s) = e−asL{g(t + a)}(s)
L−1{e−asL{f(t)}(s)} = f(t − a)u(t − a)



Section 7.4 Inverse Laplace Transform.

Definition Given a function F (s), if there is a function f(t) that is continuous on [0,∞)
and satisfies

L{f}(s) = F (s),

then we say that f(t) is the inverse Laplace transform of F (s) and employ the notation
f(t) = L−1{F}(t).

Section 7.5 Solving initial value problems.

To solve an initial value problem:
(a) Take the Laplace transform of both sides of the equation.

(b) Use the properties of the Laplace transform and the initial conditions to obtain an
equation for the Laplace transform of the solution and then solve this equation for
the transform.

(c) Determine the inverse Laplace transform of the solution.

Section 7.6 Transforms of discontinuous and periodic functions

Definition. The unit step function u(t) is defined by

u(t) =

{

0, t < 0
1, t > 0

In general case

u(t − a) =

{

0, t < a
1, t > a.

The Laplace transform of u(t− a) is

L{u(t− a)} =
e−as

s
.

The properties of Laplace transform:

L{g(t)u(t− a)}(s) = e−asL{g(t + a)}(s)

L−1{e−asL{f(t)}(s)} = f(t − a)u(t− a)

Chapter 9. Matrix methods for linear systems.
Section 9.1 Introduction



If a system of differential equations is expressed as















x′
1 = a11(t)x1 + a12(t)x2(t) + . . . + a1n(t)xn + f1(t)

x′
2 = a21(t)x1 + a22(t)x2(t) + . . . + a2n(t)xn + f2(t)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
x′

n = an1(t)x1 + an2(t)x2(t) + . . . + ann(t)xn + fn(t)

it is said to be a linear nonhomogeneous system in normal form. The matrix formulation of
such a system is then

x′ = A(t)x + f(t),

where A(t) is the coefficient matrix

A(t) =











a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)

...
... · · · ...

an1(t) an2(t) · · · ann(t)











x(t) is the solution vector

x =











x1

x2
...

xn











, x′ =











x′
1

x′
2
...

x′
n











, f(t) =











f1(t)
f2(t)

...
fn(t)











An nth order linear differential equation

y(n)(t) + pn−1(t)y
(n−1)(t) + · · · + p0(t)y(t) = g(t)

can be rewritten as a first order system in normal form using the substitution x1(t) = y(t),
x2(t) = y′(t),..., xn(t) = y(n−1)(t)















x′
1 = x2

x′
2 = x3

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
x′

n = −p0(t)x1 − p1(t)x2 − . . . − pn−1(t)xn − g(t)

Section 9.4 Linear system in normal form

The system of n linear differential equations is in normal form if it is expressed as

x′ = A(t)x + f(t),

where A(t) is the coefficient n × n matrix, x(t) = col(x1(t), x2(t), . . . , xn(t)),
f(t) = col(f1(t), f2(t), . . . , fn(t)).
The initial value problem for the linear system is the problem for finding a differentiable

vector function x(t) that satisfies the system on the interval I and also satisfies the initial
condition x(t0) = x0 = col(x1,0, ..., xn,0).



Theorem. Suppose A(t) and f(t) are continuous on an open interval I that contains the
point t0. Then, for any choice of the initial vector x0, there exists a unique solution x(t) on the
whole interval I to the IVP

x′(t) = A(t)x(t) + f(t), x(t0) = x0.

Definition. The m vector functions x1,...,xm are said to be linearly dependent (LD)
on an interval I if there exist constants c1, ..., cm not all zero, s.t.

c1x1 + . . . + cmxm = 0

for all t in I. If the vectors are not linearly dependent, they are said to be linearly
independent (LI) on I.

Definition. The Wronskian of n vectors functions x1(t) = col(x1,1, ..., xn,1),...,xn(t) =
col(x1,n, ..., xn,n) is defined to be the real-valued function

W [x1, ...,xn](t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1,1(t) x1,2(t) · · · x1,n(t)
x2,1(t) x2,2(t) · · · x2,n(t)

...
... · · · ...

xn,1(t) xn,2(t) · · · xn,n(t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

The Wronskian of solutions to the linear homogeneous system x′(t) = A(t)x(t) is either
identically zero or never zero on I. A set of n solutions x1, ...,xn to x′(t) = A(t)x(t) on I is LI
on I if and only if their Wronskian is never zero on I.

Presentation of solutions (homogeneous case)
Let x1, ...,xn be n LI particular solutions to the homogeneous system

x′(t) = A(t)x(t)

on I. Then every solution to the system on I can be expressed in the form

x(t) = c1x1(t) + ... + xn(t),

where c1, ..., cn are constants.

A set of solutions {x1(t), ...,xn(t)} that are LI is called a fundamental solution set (FSS)
for x′(t) = A(t)x(t). The linear combination x(t) = c1x1(t) + ... + xn(t) is called a general
solution to x′(t) = A(t)x(t). A matrix

X(t) = [x1(t),x2(t), ...,xn(t)] =











x1,1(t) x1,2(t) . . . x1,n(t)
x2,1(t) x2,2(t) . . . x2,n(t)

...
... . . .

...
xn,1(t) xn,2(t) . . . xn,n(t)











is called a fundamental matrix (FM) for x′(t) = A(t)x(t).



Section 9.5 Homogeneous linear system with constant coefficients.

We want to obtain a general solution to the system

x′(t) = Ax(t),

where A is a constant n × n matrix. We will be seeking particular solutions to the given
system of the form

x(t) = ertu,

where r is a constant and u is a constant vector, both of which must be determined.
Substituting x(t) = ertu in system gives

ertu = Aertu = ertAu

or
(A − rI)u = 0,

where

rI =











r 0 . . . 0
0 r . . . 0
...

... . . .
...

0 0 . . . r











Definition. Let A = [aij ] be an n × n constant matrix. The eigenvalues of A are those
numbers r for which (A − rI)u = 0 has at least one nontrivial solution u. The corresponding
nontrivial solutions u are called the eigenvectors of A associated with r.

System (A − rI)u = 0 have a nontrivial solution if an only if

|A − rI| = 0.

Equation |A − rI| = 0 is called the characteristic equation of A.

Theorem. Suppose the n × n constant matrix A has n LI eigenvectors u1, u2,...,un. Let
ri be the eigenvalue corresponding to ui. Then

{er1tu1, e
r2tu2, ..., e

rntun}

is a FSS on (−∞, +∞) for the homogeneous system x′(t) = Ax(t). Consequently, a general
solution to x′(t) = Ax(t) is

x(t) = c1e
r1tu1 + c2e

r2tu2 + ... + cnerntun,

where c1, c2, ..., cn are arbitrary constants.

Theorem. If r1,...,rm are distinct eigenvalues for the matrix A and ui is an eigenvector
associated with ri, then u1,...,um are LI.

Corollary. If the n × n constant matrix A has n distinct eigenvalues and ui is an
eigenvector associated with ri, then

{er1tu1, e
r2tu2, ..., e

rntun}

is a FSS for the homogeneous system x′(t) = Ax(t).



Linear Algebra

Matrices

Definition. An m-by-n matrix is a rectangular array of numbers that has m rows and
n columns:











a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn











Notation: A = (aij)1≤i≤n, 1≤j≤m, or simply A = (aij) if the dimensions are known.

An n-dimensional vector can be represented as a 1 × n matrix (row vector) or as an n × 1
matrix (column vector):

(x1, x2, . . . , xn)











x1

x2
...

xn











An m×n matrix A = (aij) can be regarded as a column of n-dimensional row vectors or as
a row of m-dimensional column vectors:

A =











v1

v2
...

vm











, vi = (ai1, ai2, . . . , ain)

A = (w1,w2, . . . ,wn), wj =











a1j

a2j
...

amj











Matrix algebra
Definition. Let A = (aij) and B = (bij) be m×n matrices. The sum A + B is defined to

be the m×n matrix C = (cij) such that cij = aij + bij for all indices i, j.

That is, two matrices with the same dimensions can be added by adding their corresponding
entries.





a11 a12

a21 a22

a31 a32



+





b11 b12

b21 b22

b31 b32



 =





a11 + b11 a12 + b12

a21 + b21 a22 + b22

a31 + b31 a32 + b32





Definition. Given an m×n matrix A = (aij) and a number r, the scalar multiple rA is
defined to be the m×n matrix D = (dij) such that dij = raij for all indices i, j.



That is, to multiply a matrix by a scalar r,
one multiplies each entry of the matrix by r.

r





a11 a12 a13

a21 a22 a23

a31 a32 a33



 =





ra11 ra12 ra13

ra21 ra22 ra23

ra31 ra32 ra33





The m×n zero matrix (all entries are zeros) is denoted Omn or simply O.

Negative of a matrix: −A is defined as (−1)A.

Matrix difference: A − B is defined as A + (−B).

Examples

A =

(

3 2 −1
1 1 1

)

, B =

(

2 0 1
0 1 1

)

,

C =

(

2 0
0 1

)

, D =

(

1 1
0 1

)

.

A + B =

(

5 2 0
1 2 2

)

, A − B =

(

1 2 −2
1 0 0

)

,

2C =

(

4 0
0 2

)

, 3D =

(

3 3
0 3

)

,

2C + 3D =

(

7 3
0 5

)

, A + D is not defined.

Properties of linear operations
(A + B) + C = A + (B + C)

A + B = B + A

A + O = O + A = A

A + (−A) = (−A) + A = O

r(sA) = (rs)A

r(A + B) = rA + rB

(r + s)A = rA + sA

1A = A

0A = O

Matrix multiplication
The product of matrices A and B is defined if the number of columns in A matches the

number of rows in B.

Definition. Let A = (aik) be an m×n matrix and B = (bkj) be an n×p matrix.
The product AB is defined to be the m×p matrix C = (cij) such that cij =

∑n
k=1 aikbkj

for all indices i, j.

That is, matrices are multiplied row by column:



(

∗ ∗ ∗
* * *

)





∗ ∗ * ∗
∗ ∗ * ∗
∗ ∗ * ∗



 =

(

∗ ∗ ∗ ∗
∗ ∗ * ∗

)

A =











v1

v2
...

vm











, vi = (ai1, ai2, . . . , ain);

B = (w1,w2, . . . ,wp), wj =











b1j

b2j
...

bnj











.

=⇒ AB =











v1·w1 v1·w2 . . . v1·wp

v2·w1 v2·w2 . . . v2·wp
...

...
. . .

...
vm·w1 vm·w2 . . . vm·wp











.

Examples.

(x1, x2, . . . , xn)









y1

y2
...

yn









=

(

n
∑

k=1

xkyk

)









y1

y2
...

yn









(x1, x2, . . . , xn) =









y1x1 y1x2 . . . y1xn

y2x1 y2x2 . . . y2xn
...

...
. . .

...
ynx1 ynx2 . . . ynxn









.

(

1 1 −1
0 2 1

)





0 3 1 1
−2 5 6 0
1 7 4 1



=

(

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

)

(

1 1 −1
0 2 1

)





0 3 1 1
−2 5 6 0
1 7 4 1



 =

(

∗ ∗ ∗
∗ ∗ ∗ ∗

)

(

1 1 −1
0 2 1

)





0 3 1 1
−2 5 6 0
1 7 4 1



 =

(

−3 ∗ ∗ ∗
∗ ∗ ∗ ∗

)

(

1 1 −1
0 2 1

)





0 3 1 1
−2 5 6 0
1 7 4 1



 =

(

−3 ∗ ∗
∗ ∗ ∗ ∗

)



(

1 1 −1
0 2 1

)





0 3 1 1
−2 5 6 0
1 7 4 1



 =

(

−3 1 ∗ ∗
∗ ∗ ∗ ∗

)

(

1 1 −1
0 2 1

)





0 3 1 1
−2 5 6 0
1 7 4 1



 =

(

−3 1 ∗
∗ ∗ ∗ ∗

)

(

1 1 −1
0 2 1

)





0 3 1 1
−2 5 6 0
1 7 4 1



 =

(

−3 1 3 ∗
∗ ∗ ∗ ∗

)

(

1 1 −1
0 2 1

)





0 3 1 1
−2 5 6 0
1 7 4 1



 =

(

−3 1 3
∗ ∗ ∗ ∗

)

(

1 1 −1
0 2 1

)





0 3 1 1
−2 5 6 0
1 7 4 1



 =

(

−3 1 3 0
∗ ∗ ∗ ∗

)

(

1 1 −1
0 2 1

)





0 3 1 1
−2 5 6 0
1 7 4 1



 =

(−3 1 3 0

∗ ∗ ∗

)

(

1 1 −1
0 2 1

)





0 3 1 1
−2 5 6 0
1 7 4 1



 =

(

−3 1 3 0
−3 ∗ ∗ ∗

)

(

1 1 −1
0 2 1

)





0 3 1 1
−2 5 6 0
1 7 4 1



 =

(−3 1 3 0

−3 ∗ ∗

)

(

1 1 −1
0 2 1

)





0 3 1 1
−2 5 6 0
1 7 4 1



 =

(

−3 1 3 0
−3 17 ∗ ∗

)

(

1 1 −1
0 2 1

)





0 3 1 1
−2 5 6 0
1 7 4 1



 =

(−3 1 3 0

−3 17 ∗

)

(

1 1 −1
0 2 1

)





0 3 1 1
−2 5 6 0
1 7 4 1



 =

(

−3 1 3 0
−3 17 16 ∗

)

(

1 1 −1
0 2 1

)





0 3 1 1
−2 5 6 0
1 7 4 1



 =

(−3 1 3 0

−3 17 16

)

(

1 1 −1
0 2 1

)





0 3 1 1
−2 5 6 0
1 7 4 1



 =

(

−3 1 3 0
−3 17 16 1

)



(

1 1 −1
0 2 1

)





0 3 1 1
−2 5 6 0
1 7 4 1



 =

(

−3 1 3 0
−3 17 16 1

)

Any system of linear equations can be rewritten as a matrix equation.














a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · · · · ·
am1x1 + am2x2 + · · ·+ amnxn = bm

⇐⇒











a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn





















x1

x2
...

xn











=











b1

b2
...

bm











Properties of matrix multiplication:

(AB)C = A(BC) (associative law)

(A + B)C = AC + BC (distributive law #1)

C(A + B) = CA + CB (distributive law #2)

(rA)B = A(rB) = r(AB)

If A and B are n×n matrices, then both AB and BA are well defined n×n matrices.

However, in general, AB 6= BA.

Example. Let A =

(

2 0
0 1

)

, B =

(

1 1
0 1

)

.

Then AB =

(

2 2
0 1

)

, BA =

(

2 1
0 1

)

.

Inverse matrix

Definition. Let A be an n×n matrix. The inverse of A is an n×n matrix, denoted A−1,
such that

AA−1 = A−1A = I.

If A−1 exists then the matrix A is called invertible. Otherwise A is called singular.

A convenient way to compute the inverse matrix A−1 is to merge the matrices A and I into
one 3×6 matrix (A | I), and apply elementary row operations to this new matrix.



A =





3 −2 0
1 0 1

−2 3 0





, I =





1 0 0
0 1 0
0 0 1



(A | I) =





3 −2 0 1 0 0
1 0 1 0 1 0

−2 3 0 0 0 1



(A | I) =





3 −2 0 1 0 0
1 0 1 0 1 0

−2 3 0 0 0 1





As soon as the left half of the 3×6 matrix is converted to the identity matrix, we have got
the inverse matrix A−1 in the right half.

→







1 0 0 3
5

0 2
5

0 1 0 2
5

0 3
5

0 0 1 −3
5

1 −2
5







Thus





3 −2 0
1 0 1

−2 3 0





−1

=







3
5

0 2
5

2
5

0 3
5

−3
5

1 −2
5






.

That is,




3 −2 0
1 0 1

−2 3 0











3
5

0 2
5

2
5

0 3
5

−3
5

1 −2
5






=





1 0 0
0 1 0
0 0 1



,







3
5

0 2
5

2
5

0 3
5

−3
5

1 −2
5











3 −2 0
1 0 1

−2 3 0



 =





1 0 0
0 1 0
0 0 1



.

Determinants

Determinant is a scalar assigned to each square matrix.

Notation. The determinant of a matrix A = (aij)1≤i,j≤n is denoted det A or
∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Principal property: det A = 0 if and only if the matrix A is singular.

Definition. det (a) = a,

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

= ad − bc,
∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

= a11a22a33 + a12a23a31 + a13a21a32−
−a13a22a31 − a12a21a33 − a11a23a32.



+ :







* ∗ ∗
∗ * ∗
∗ ∗ *






,







∗ * ∗
∗ ∗ *

* ∗ ∗






,







∗ ∗ *

* ∗ ∗
∗ * ∗






.

− :







∗ ∗ *

∗ * ∗
* ∗ ∗






,







∗ * ∗
* ∗ ∗
∗ ∗ *






,







* ∗ ∗
∗ ∗ *

∗ * ∗






.

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

= a11a22a33 + a12a23a31 + a13a21a32−
−a13a22a31 − a12a21a33 − a11a23a32.





a11 a12 a13

a21 a22 a23

a31 a32 a33



→





a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32





+





1 2 3 ∗ ∗
∗ 1 2 3 ∗
∗ ∗ 1 2 3



 −





∗ ∗ 1 2 3

∗ 1 2 3 ∗
1 2 3 ∗ ∗





This rule works only for 3×3 matrices!

Examples (2×2 matrices)
∣

∣

∣

∣

1 0
0 1

∣

∣

∣

∣

= 1,

∣

∣

∣

∣

3 0
0 −4

∣

∣

∣

∣

= −12

Examples (3×3 matrices)
∣

∣

∣

∣

∣

∣

3 −2 0
1 0 1

−2 3 0

∣

∣

∣

∣

∣

∣

= 3 · 0 · 0 + (−2) · 1 · (−2) + 0 · 1 · 3 −

− 0 · 0 · (−2) − (−2) · 1 · 0 − 3 · 1 · 3 = 4 − 9 = −5,

∣

∣

∣

∣

∣

∣

1 4 6
0 2 5
0 0 3

∣

∣

∣

∣

∣

∣

= 1 · 2 · 3 + 4 · 5 · 0 + 6 · 0 · 0 −

− 6 · 2 · 0 − 4 · 0 · 3 − 1 · 5 · 0 = 1 · 2 · 3 = 6.

Eigenvalues and eigenvectors

Definition. Let A be an n×n matrix. A number r is called an eigenvalue of the matrix
A if Av = rv for a nonzero column vector v.

The vector v is called an eigenvector of A belonging to (or associated with) the eigenvalue
r.

The zero vector is never considered an eigenvector.
Definition. det(A − rI) = 0 is called the characteristic equation of the matrix A.



Eigenvalues r of A are roots of the characteristic equation. Associated eigenvectors of A are
nonzero solutions of the equation (A − rI)x = 0.

Theorem. Let A = (aij) be an n×n matrix. Then det(A − rI) is a polynomial of r of
degree n:

det(A − rI) = (−1)nrn + c1r
n−1 + · · · + cn−1r + cn.

Definition. The polynomial p(r) = det(A−rI) is called the characteristic polynomial
of the matrix A.

Corollary Any n×n matrix has at most n eigenvalues.

Example. Find the eigenvalues and corresponding eigenvectors for the matrix

A =





2 −1 1
1 2 −1
1 −1 2





The characteristic polynomial for the matrix A is

|A − rI| =

∣

∣

∣

∣

∣

∣

2 − r −1 1
1 2 − r −1
1 −1 2 − r

∣

∣

∣

∣

∣

∣

=

= (2 − r)3 + 1 − 1 − (2 − r) + (2 − r) − (2 − r) = (2 − r)((2 − r)2 − 1) = (1 − r)(2 − r)(3 − r)

Thus, the eigenvalues for the matrix A are

r1 = 1, r2 = 2, r3 = 3.

The eigenvector u1 = col(u11, u12, u13), associated with eigenvalue r1 = 1, is a solution to
the system





2 − 1 −1 1
1 2 − 1 −1
1 −1 2 − 1









u11

u12

u13



 =





0
0
0





or
{

u11 − u12 + u13 = 0
u11 + u12 − u13 = 0

Adding two equation of this system gives

u11 = 0, u12 = u13 = c,

where c is an arbitrary constant. Since c is an arbitrary constant, we can choose c = 1. So,
the eigenvector corresponding to eigenvalue r1 = 1 is

u1 =





0
1
1







Similarly, the eigenvector u2 = col(u21, u22, u23) corresponding to r2 = 2 is a solution to the
system





2 − 2 −1 1
1 2 − 2 −1
1 −1 2 − 2









u21

u22

u23



 =





0
0
0





or






−u22 + u23 = 0
u21 − u23 = 0
u21 − u22 = 0

The solution to this system is u21 = u22 = u23 = 1. Thus, the eigenvector corresponding to
eigenvalue r2 = 2 is

u1 =





1
1
1





The eigenvector u3 = col(u31, u32, u33) corresponding to r3 = 3 is a solution to the system





2 − 3 −1 1
1 2 − 3 −1
1 −1 2 − 3









u31

u32

u33



 =





0
0
0





or
{

−u31 − u32 + u33 = 0
u31 − u32 − u33 = 0

Adding two equation of this system gives u32 = 0, u31 = u33 = 1 so, the eigenvector
corresponding to eigenvalue r3 = 3 is

u1 =





1
0
1






