MATH 308-519
 Spring 2010
 Practice Test II

1. Solve the following systems:
(a) $\left\{\begin{array}{l}2 x_{1}-3 x_{2}=4 \\ x_{1}+2 x_{2}=-5\end{array}\right.$
(b) $\left\{\begin{array}{l}x_{1}-3 x_{2}=5 \\ -2 x_{1}+6 x_{2}=1\end{array}\right.$
(c) $\left\{\begin{array}{l}-2 x_{1}+x_{2}=4 \\ 6 x_{1}-3 x_{2}=-12\end{array}\right.$
2. Find the general solution of the system of equations/solve the initial value problem:
(a) $\vec{x}^{\prime}=\left(\begin{array}{rr}2 & -1 \\ 3 & -2\end{array}\right) \vec{x}, \quad \vec{x}(0)=\binom{2}{5}$
(b) $\vec{x}^{\prime}=\left(\begin{array}{ll}3 & -2 \\ 4 & -1\end{array}\right) \vec{x}$
(c) $\vec{x}^{\prime}=\left(\begin{array}{rr}1 & -4 \\ 4 & -7\end{array}\right) \vec{x}, \quad \vec{x}(0)=\binom{3}{2}$
3. Use variation of parameters to find the general solution for the system

$$
\vec{x}^{\prime}=\left(\begin{array}{cc}
-4 & -2 \\
6 & 3
\end{array}\right) \vec{x}+\binom{\frac{2}{e^{t}-1}}{-\frac{3}{e^{t}-1}}
$$

4. A mass of 20 g stretches a spring 5 cm . Suppose that the mass is also attached to a viscous damper with a damping constant of 400 dyne-s $/ \mathrm{cm}$. The mass is pulled down an additional 2 cm and then released. Formulate the initial value problem that governs the motion of the mass.
5. Determine which of the following operators are linear:
(a) $L_{1}[y]=y^{\prime \prime}+e^{y} y$
(b) $L_{2}[y]=t y^{\prime \prime}+t^{2} y^{\prime}+\left(t^{3}-1\right) y$
(c) $L_{3}[y]=t\left(y^{\prime \prime}\right)^{2}+y$
(d) $L_{4}[y]=2 y^{\prime \prime}+3 y^{\prime}+4 y$
(e) $L_{5}[y]=2 y^{\prime \prime}+2\left(y^{\prime}\right)^{2}+4 y$
6. Determine the longest interval in which the solution to the initial value problem

$$
(x-3) y^{\prime \prime}+x y^{\prime}+y \ln x=0 \quad y(1)=0 \quad y^{\prime}(1)=1
$$

is certain to have a unique twice differentiable solution.
7. If $W[f, g]=t^{2} e^{t}$ and $f(t)=t$, find $g(t)$.
8. Verify that the functions $y_{1}(x)=x, y_{2}(x)=\sin x$ are solutions of the differential equation

$$
(1-x \cot x) y^{\prime \prime}-x y^{\prime}+y=0, \quad 0 \leq x \leq \pi
$$

Do they constitute a fundamental set of solutions?

