7. If $W[f, g]=t^{2} e^{t}$ and $f(t)=t$, find $g(t)$.

SOLUTION.

$$
W[f, g]=\left|\begin{array}{cc}
f(t) & g(t) \\
f^{\prime}(t) & g^{\prime}(t)
\end{array}\right|=\left|\begin{array}{cc}
t & g(t) \\
1 & g^{\prime}(t)
\end{array}\right|=t g^{\prime}(t)-g(t)=t^{2} e^{t}
$$

The differential equation for $g(t)$ is

$$
t g^{\prime}(t)-g(t)=t^{2} e^{t}
$$

It is a linear first-order differential equation. Its standart form is

$$
g^{\prime}(t)-\frac{1}{t} g(t)=t e^{t}
$$

The differential equation for the integrating factor μ is

$$
\begin{gathered}
\mu^{\prime}(t)+\frac{1}{t} \mu(t)=0 \\
\mu(t)=\frac{1}{t}
\end{gathered}
$$

Then,

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{1}{t} g(t)\right)=\frac{1}{t} t e^{t}=e^{t} \\
& \frac{1}{t} g(t)=\int e^{t} d t=e^{t}+C
\end{aligned}
$$

Thus,

$$
g(t)=t e^{t}+C t
$$

