Practice Test II

1. The Existence and Uniqueness Theorem guarantees that the solution to

$$x^{3}y'' + \frac{x}{\sin x}y' - \frac{2}{x-5}y = 0, \quad y(2) = 6, \quad y'(2) = 7$$

uniquely exists on

- (a) $(-\pi, \pi)$
- (b) $(0, \pi)$
- (c) $(5, \infty)$
- (d) (0, 5)
- 2. All of the following pairs of functions form a fundamental set of solutions to some second order differential equation on $(-\infty, \infty)$ EXCEPT
 - (a) 1, e^{-t} (b) $\cos t$, $\sin(t + 2\pi)$ (c) $e^{-2t}\cos 2t$, $e^{-2t}\sin 2t$ (d) e^{5t} , e^{5t-1}
- 3. Which of the following will be a particular solution to the equation

$$4y'' + 4y' + y = 24xe^{\frac{x}{2}}?$$

- (a) $x^2(Ax+B)e^{\frac{x}{2}}$
- (b) $(Ax + B)e^{\frac{x}{2}}$
- (c) $x(Ax+B)e^{\frac{x}{2}}$
- (d) $(Ax + B)\sin\frac{x}{2} + (Cx + D)\cos\frac{x}{2}$
- 4. A 2-kg mass is attached to a spring with stiffness k = 50 N/m. The damping force is negligible. What is the resonance frequency for the system?
 - (a) 5
 - (b) 2
 - (c) 3
 - (d) 4

- 5. The motion of the mass-spring system with damping is governed by y'' + 2y' + y = 0, y(0) = 1, y'(0) = -3. This motion is
 - (a) undamped
 - (b) underdamped
 - (c) critically damped
 - (d) overdamped

6.
$$e^{2+\frac{3\pi}{4}i} =$$

(a) π

(b)
$$\frac{\sqrt{2}}{2}(1+i)e^2$$

(c) $\frac{\sqrt{2}}{2}(1-i)e^2$
(d) $\frac{\sqrt{2}}{2}(-1+i)e^2$

- 7. A 2-kg mass is attached to a spring with stiffness k = 50 N/m. The mass is displaced 1/4 m to the left of the equilibrium point and given a velocity of 1 m/sec to the left. The damping force is negligible. The amplitude of this vibration is
 - (a) $\frac{\sqrt{41}}{20}$ (b) 1 (c) $\frac{\sqrt{20}}{41}$ (d) $\frac{1}{4}$

8. The FSS to the equation y'' - 2y' + 5y = 0 is

- (a) $\{\cos x, \sin x\}$
- (b) $\{e^x \cos 2x, e^x \sin 2x\}$
- (c) $\{e^x, xe^x\}$
- (d) $\{e^x, e^{-x}\}$

- 9. Given that $y_1(x) = -\frac{1}{2}x^2 + \frac{1}{2}x \frac{3}{4}$ is a solution to $y'' y' 2y = x^2$ and $y_2(x) = \frac{1}{4}e^{3x}$ is a solution to $y'' y' 2y = e^{3x}$. A solution to $y'' y' 2y = 2x^2 e^{3x}$ is
 - (a) $-x^{2} + x \frac{3}{2} \frac{1}{4}e^{3x}$ (b) $x^{2} - x - \frac{3}{2} - \frac{1}{4}e^{3x}$ (c) $-x^{2} + x + \frac{3}{4} - e^{3x}$ (d) $x - \frac{3}{2} - \frac{1}{4}e^{3x}$

10. The Wronskian of two functions $y_1(x) = x + 2x^2$ an $y_2(x) = 2^x$ is

- (a) $2^x(1+4x-x(1+2x))$
- (b) $-2^{x}(1+4x-x\ln 2(1+2x))$
- (c) (1+4x-x(1+2x))
- (d) $2^{x}(1+2x-x\ln 2(1+4x))$
- 11. Find a general solution to the equation

$$y'' + 6y' + 9y = \frac{e^{-3x}}{1+2x}$$

12. Find a general solution to the equation

$$4y'' + y' = 4x^3 + 48x^2 + 1$$

13. Given that $y_1(x) = x$ is a solution to

$$x^2y'' + xy' - y = 0,$$

find a second solution of this equation on $(0, +\infty)$.