1. A large tank initially contains 10 L of fresh water. A brine containing $20 \mathrm{~g} / \mathrm{L}$ of salt flows into the tank at a rate of $3 \mathrm{~L} / \mathrm{min}$. The solution inside the tank is kept well stirred and flows out of the tank at the rate $2 \mathrm{~L} / \mathrm{min}$. Determine the concentration of salt in the tank as a function of time.
2. Suppose that a sum S_{0} is invested at an annual rate of return r compounded continuously.
(a) Find the time T required for the original sum to double in value as a function of r.
(b) Determine T if $r=7 \%$.
(c) Find the return rate that must be achieved if the initial investment is to double in 8 years.
3. An object with temperature 150° is placed in a freezer whose temperature is 30°. Assume that the temperature of the freezer remains essentially constant.
(a) If the object is cooled to 120° after 8 min , what will its temperature be after 18 min ?
(b) When will its temperature be 60° ?
4. Determine (without solving the problem) an interval in which the solution to the initial value problem

$$
\left(4-t^{2}\right) y^{\prime}+2 t y=3 t^{2}, \quad y(1)=-3
$$

is certain to exist.
5. Solve the initial value problem

$$
y^{\prime}=\frac{t^{2}}{1+t^{3}}, \quad y(0)=y_{0}
$$

and determine how the interval in which the solution exists depends on the initial value y_{0}.
6. Solve the following initial value problem

$$
\sqrt{y} d t+(1+t) d y=0 \quad y(0)=1
$$

7. Find the general solution to the equation

$$
\left(t^{2}-1\right) y^{\prime}+2 t y+3=0
$$

8. Solve the initial value problem

$$
\left(y e^{x y} \cos (2 x)-2 e^{x y} \sin (2 x)+2 x\right) d x+\left(x e^{x y} \cos (2 x)-3\right) d y=0, \quad y(0)=-1
$$

9. Find an integrating factor for the equation

$$
\left(3 x y+y^{2}\right)+\left(x^{2}+x y\right) y^{\prime}=0
$$

and then solve the equation.
10. Solve the initial value problem

$$
6 y^{\prime \prime}-5 y^{\prime}+y=0, \quad y(0)=4, y^{\prime}(0)=0
$$

11. Find the general solution to the equation

$$
4 y^{\prime \prime}-12 y^{\prime}+9 y=0
$$

12. The Existence and Uniqueness Theorem guarantees that the solution to

$$
x^{3} y^{\prime \prime}+\frac{x}{\sin x} y^{\prime}-\frac{2}{x-5} y=0, \quad y(2)=6, \quad y^{\prime}(2)=7
$$

uniquely exists on
(a) $(-\pi, \pi)$
(b) $(0, \pi)$
(c) $(5, \infty)$
(d) $(0,5)$
13. All of the following pairs of functions form a fundamental set of solutions to some second order differential equation on $(-\infty, \infty)$ EXCEPT
(a) $1, e^{-t}$
(b) $\cos t, \quad \sin (t+2 \pi)$
(c) $e^{-2 t} \cos 2 t, \quad e^{-2 t} \sin 2 t$
(d) $e^{5 t}, \quad e^{5 t-1}$
14. Which of the following will be a particular solution to the equation

$$
4 y^{\prime \prime}+4 y^{\prime}+y=24 x \mathrm{e}^{\frac{x}{2}} ?
$$

(a) $x^{2}(A x+B) \mathrm{e}^{\frac{x}{2}}$
(b) $(A x+B) \mathrm{e}^{\frac{x}{2}}$
(c) $x(A x+B) \mathrm{e}^{\frac{x}{2}}$
(d) $(A x+B) \sin \frac{x}{2}+(C x+D) \cos \frac{x}{2}$
15. A $2-\mathrm{kg}$ mass is attached to a spring with stiffness $k=50 \mathrm{~N} / \mathrm{m}$. The damping force is negligible. What is the resonance frequency for the system?
(a) 5
(b) 2
(c) 3
(d) 4
16. The motion of the mass-spring system with damping is governed by $y^{\prime \prime}+2 y^{\prime}+y=$ $0, \quad y(0)=1, y^{\prime}(0)=-3$. This motion is
(a) undamped
(b) underdamped
(c) critically damped
(d) overdamped
17. $e^{2+\frac{3 \pi}{4} i}=$
(a) π
(b) $\frac{\sqrt{2}}{2}(1+i) e^{2}$
(c) $\frac{\sqrt{2}}{2}(1-i) e^{2}$
(d) $\frac{\sqrt{2}}{2}(-1+i) e^{2}$
18. A $2-\mathrm{kg}$ mass is attached to a spring with stiffness $k=50 \mathrm{~N} / \mathrm{m}$. The mass is displaced $1 / 4 \mathrm{~m}$ to the left of the equilibrium point and given a velocity of $1 \mathrm{~m} / \mathrm{sec}$ to the left. The damping force is negligible. The amplitude of this vibration is
(a) $\frac{\sqrt{41}}{20}$
(b) 1
(c) $\frac{\sqrt{20}}{41}$
(d) $\frac{1}{4}$
19. The FSS to the equation $y^{\prime \prime}-2 y^{\prime}+5 y=0$ is
(a) $\{\cos x, \sin x\}$
(b) $\left\{e^{x} \cos 2 x, e^{x} \sin 2 x\right\}$
(c) $\left\{e^{x}, x e^{x}\right\}$
(d) $\left\{e^{x}, e^{-x}\right\}$
20. Given that $y_{1}(x)=-\frac{1}{2} x^{2}+\frac{1}{2} x-\frac{3}{4}$ is a solution to $y^{\prime \prime}-y^{\prime}-2 y=x^{2}$ and $y_{2}(x)=\frac{1}{4} e^{3 x}$ is a solution to $y^{\prime \prime}-y^{\prime}-2 y=e^{3 x}$. A solution to $y^{\prime \prime}-y^{\prime}-2 y=2 x^{2}-e^{3 x}$ is
(a) $-x^{2}+x-\frac{3}{2}-\frac{1}{4} e^{3 x}$
(b) $x^{2}-x-\frac{3}{2}-\frac{1}{4} e^{3 x}$
(c) $-x^{2}+x+\frac{3}{4}-e^{3 x}$
(d) $x-\frac{3}{2}-\frac{1}{4} e^{3 x}$
21. The Wronskian of two functions $y_{1}(x)=x+2 x^{2}$ an $y_{2}(x)=2^{x}$ is
(a) $2^{x}(1+4 x-x(1+2 x))$
(b) $-2^{x}(1+4 x-x \ln 2(1+2 x))$
(c) $(1+4 x-x(1+2 x))$
(d) $2^{x}(1+2 x-x \ln 2(1+4 x))$
22. Find a general solution to the equation

$$
y^{\prime \prime}+6 y^{\prime}+9 y=\frac{e^{-3 x}}{1+2 x}
$$

23. Find a general solution to the equation

$$
4 y^{\prime \prime}+y^{\prime}=4 x^{3}+48 x^{2}+1
$$

24. Given that $y_{1}(x)=x$ is a solution to

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0,
$$

find a second solution of this equation on $(0,+\infty)$.
25. Find the Laplace transform of the given function.
(a) $f(t)= \begin{cases}\frac{t}{2}, & 0 \leq t<6 \\ 3, & t \geq 6\end{cases}$
(b) $f(t)=\left(t^{2}-2 t+2\right) u_{1}(t)$
(c) $f(t)=\int_{0}^{t}(t-\tau)^{2} \cos 2 \tau d \tau$
(d) $f(t)=t \cos 3 t$
(e) $f(t)=e^{t} \delta(t-1)$
26. Find the inverse Laplace transform of the given function.
(a) $F(s)=\frac{2 s+6}{s^{2}-4 s+8}$
(b) $F(s)=\frac{e^{-2 s}}{s^{2}+s-2}$
27. Solve the initial value problem using the Laplace transform:
(a) $y^{\prime \prime}+4 y=\left\{\begin{array}{ll}t, & 0 \leq t<1 \\ 1, & t \geq 1\end{array}, y(0)=y^{\prime}(0)=0\right.$
(b) $y^{\prime \prime}+2 y^{\prime}+3 y=\delta(t-3 \pi), y(0)=y^{\prime}(0)=0$
(c) $y^{\prime \prime}+4 y^{\prime}+4 y=g(t), y(0)=2, y^{\prime}(0)=-3$
28. Find A^{-1} if $A=\left(\begin{array}{rr}1+i & -1+2 i \\ 3+2 i & 2-i\end{array}\right)$
29. Find $B A$ if $A=\left(\begin{array}{rr}1+i & -1+2 i \\ 3+2 i & 2-i\end{array}\right), B=\left(\begin{array}{rr}i & 3 \\ 2 & -2 i\end{array}\right)$
30. Find the general solution of the system
(a) $\mathbf{x}^{\prime}=\left(\begin{array}{rr}1 & 1 \\ 4 & -2\end{array}\right) \mathbf{x}$
(b) $\mathbf{x}^{\prime}=\left(\begin{array}{rr}-3 & -1 \\ 1 & -1\end{array}\right) \mathbf{x}$
(c) $\mathbf{x}^{\prime}=\left(\begin{array}{rr}-3 & 2 \\ -1 & -1\end{array}\right) \mathbf{x}$

