Due Thursday, Feb. 27 at the beginning of class.

- 1. Determine the longest interval in which the given initial value problem is certain to have a unique solution. Do not solve the problem.
 - (a) $(1+t^2)y'' + ty' y = \tan t$, $y(1) = y_0$, $y'(1) = y_1$.
 - (b) $t(t-3)y'' + 2ty' y = t^2$, $y(1) = y_0$, $y'(1) = y_1$.
 - (c) $e^t y'' + \frac{y'}{t-3} + y = \ln t$, $y(1) = y_0$, $y'(1) = y_1$.
- 2. Find the Wronskian for the given pair of functions.
 - (a) $y_1(t) = e^{3t}$, $y_2(t) = e^{-4t}$.
 - (b) $y_1(t) = e^{-t}\cos(2t), y_2(t) = e^{-t}\sin(2t).$
- 3. If the Wronskian W of f and g is $3e^{4t}$, and $f(t) = e^{2t}$, find g(t).
- 4. Find the general solution to the given differential equation.
 - (a) y'' + 2y' 8y = 0
 - (b) y'' + y' + 1.25y = 0
- 5. Given that $y_1(t) = t^{-1}$ is a solution of the equation

$$t^2y'' + 3ty' + y = 0, \quad t > 0.$$

Find a second solution of the equation.

6. Given that $y_1(t) = \sin(t^2)$ is a solution of the equation

$$ty'' - y' + 4t^3y = 0, \quad t > 0.$$

Find a second solution of the equation.