Due Thursday, April, 3 at the beginning of class.

1. Use definition to find the Laplace transform of the given function.
(a) $f(t)=e^{6 t}$
(b) $f(t)= \begin{cases}1-t, & 0<t<1, \\ 0, & t>1 .\end{cases}$
2. Use the table and properties of Laplace transform to determine the following transforms.
(a) $\mathcal{L}\left\{t^{3}-t e^{t}+e^{4 t} \cos t\right\}$
(b) $\mathcal{L}\left\{t \sin ^{2} t\right\}$ (HINT: use the half-angle identity)
(c) $\mathcal{L}\left\{e^{-2 t} \sin 2 t+e^{3 t} t^{2}\right\}$
3. Find the inverse Laplace transform of the given function.
(a) $\frac{4}{s^{2}+9}$
(b) $\frac{2 s+16}{s^{2}+4 s+13}$
(c) $\frac{5}{(s+2)^{4}}$
4. Solve the initial value problem using the method of Laplace transform.
(a) $y^{\prime \prime}-y^{\prime}-2 y=0, y(0)=-2, y^{\prime}(0)=5$
(b) $y^{\prime \prime}-2 y^{\prime}+5 y=-8 e^{-t}, y(0)=2, y^{\prime}(0)=12$
