
Chapter 7. Systems of first order linear equations.
Section 7.1 Introduction

1. First-order system of differential equations:

x′
1 = F1(t, x1, x2, . . . , xn)

x′
2 = F2(t, x1, x2, . . . , xn)

...
x′
n = Fn(t, x1, x2, . . . , xn)

(1)

2. A set of differentiable functions x1(t), x2(t), . . . , xn(t) satisfying the system (1) is called a
solution of the system (1).

3. System of ODE using a vector notation:

X =


x1

x2
...
xn

 , F =


F1(t, x1, x2, . . . , xn)
F2(t, x1, x2, . . . , xn)

...
Fn(t, x1, x2, . . . , xn)


Then the system (1) can be written as

X′ = F(t,X). (2)

More generally, any differential equation of order n,

y(n) = f(t, y, y′, y′′, . . . , y(n−1))

can be transformed to a system of n differential equations of the first order by introducing
derivatives up to order n− 1 as new variables.

4. To transform the following n-th order IVP,

y(n) = f(t, y, y′, y′′, . . . , y(n−1)),

(t0) = α0, y′(t0) = α1, . . . , y(n−1)(t0) = αn−1

into the system we set
x1(t) = y(t)
x2(t) = y′(t)

...
xn(t) = y(n−1)(t)

to get
x′
1 = x2

x′
2 = x3

...
x′
n = f(t, x1, x2, . . . , xn)

subject to
x1(t0) = α0, x2(t0) = α1, . . . , xn(t0) = αn−1.
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5. Note, if f depends on t then the system is called non-autonomous and the phase portrait
(space) in this case is in Rn+1. Otherwise (i.e. if f doesn’t depend on t )the system is
autonomous and the phase portrait (space) in this case is in Rn.

6. Important: Not any system of n first order ODE comes from a scalar n-th order.

Example 1. Transform the differential equation into a system of first order equations.

(a) y′′ + 5y′ − 2y = sin t

(b) y′′′ + 3y′ + y = 4

Example 2. Transform the initial value problem

y′′ + .25y′ + 4t = 2 cos 3t, y(0) = 1, y′(0) = −2

into a system of 2 first order differential equations.
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7. Existence and Uniqueness Theorem for IVP defined by a system: Consider the IVP:

x′
1 = F1(t, x1, x2, . . . , xn)

x′
2 = F2(t, x1, x2, . . . , xn)

...
x′
n = Fn(t, x1, x2, . . . , xn)

x1(t0) = x0
1

x2(t0) = x0
2

...
xn(t0) = x0

n

(3)

If each of the functions F1, F2, . . . , Fn and the partial derivatives
∂F1

∂xk

,
∂F2

∂xk

, . . . ,
∂Fn

∂xk

(1 ≤
k ≤ n) are continuous in a region

R = {α < t < β, α1 < x1 < β1, α2 < x1 < β2, . . . , αn < xn < βn}

and the point (t0, x
0
1, . . . , x

0
n) belongs to R, then there is an interval (t0 − h, t0 + h) in

which there exists a unique solution of the IVP (3).

Linear Systems

8. When each of the functions F1, F2, . . . , Fn in (3) is linear in the dependent variables
x1, . . . , xn, we get a system of linear equations:

x′
1 = p11(t)x1 + p12(t)x2 + . . .+ p1n(t)xn + g1(t)

x′
2 = p21(t)x1 + p22(t)x2 + . . .+ p2n(t)xn + g2(t)

...
x′
n = pn1(t)x1 + pn2(t)x2 + . . .+ pnn(t)xn + gn(t)

(4)

When gk(t) ≡ 0 (1 ≤ k ≤ n), the linear system (4) is said to be homogeneous; otherwise
it is nonhomogeneous.

9. Existence and Uniqueness Theorem for linear IVP:

If the functions p11, p12, . . . , pnn and g1, . . . , gn are continuous on an open interval I =
{t : α < t < β}, then there exists a unique solution of the system (4) that also satisfies
the initial conditions x1(t0) = x0

1, x2(t0) = x0
2, . . . , xn(t0) = x0

n, where t0 is any point of I.
Moreover, the solution exists throughout the interval I.

Matrix Form of A Linear System

10. If X, P (t), and G(t) denote the respective matrices

X =


x1(t)
x2(t)
...

xn(t)

 , P (t) =


p11(t) p12(t) . . . p1n(t)
p21(t) p22(t) . . . p2n(t)

...
...

pn1(t) pn2(t) . . . pnn(t)

 , G(t) =


g1(t)
g2(t)
...

gn(t)

 ,
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then the system of linear first-order DE (4) can be written as

X ′ = PX +G.

If the system is homogeneous, its matrix form is then

X ′ = PX.

11. Example 3. Express the given system in matrix form:

(a)
x′
1 = x2

x′
2 = −x1

(b)
x′
1 = x2 − x1 + t

x′
2 = −x1 + 7x2 − x3 − et

x′
3 = 2x2 − x3 + sin t
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