
Chapter 1. Introduction.

• Equation that contains some derivatives of an unknown function is called a differential
equation.

• If an equation involves the derivative of one variable with respect to another, then the
former is called a dependent variable and the latter is called an independent variable.

• A differential equation involving only ordinary derivatives with respect to a single variable
is called an ordinary differential equations or ODE. A differential equation involv-
ing partial derivatives with respect to more then one variable is a partial differential
equations or PDE.

Example 1. For the following differential equations indicate independent and dependent
variables.

1. yv + y2y′′′ + y′ sinx = 0

2. t2y′′ + ty = 0

3. x′′′
√
x− 3t2x′ + xet = 0

• A differential equation that describes some physical process is often called a mathemat-
ical model of the process.

Examples.

1. A falling object.

(a) Neglect the air resistance.
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(b) Air resistance is proportional to the velocity of the object.

2. Field mice and owls. Consider a population of field mice who inhabit a certain rural area.
In the absence of predators the rate of change of the mouse population is proportional to
the current population.

If we assume that predator rate is a constant k, (k > 0), then

Constructing math models:

1. Identify the independent and dependent variables and assign letters to represent them.

2. Choose the units of measurement for each variable.

3. Articulate the basic principle that underlines or governs the problem you are investigating.

4. Express the principle or laws from Step 3 in terms of variables from Step 1.

5. Make sure that each term in the equation has the same physical units.

6. The result of Step 4 is a single differential equation which constitutes the math model.

Example 2. A pond initially contains 106 gallons of water and an unknown amount of an
undesirable chemical. Water containing 0.01 g of this chemical per gallon flows into the pond
at a rate of 300 gal/hour. The mixture flows out at the same rate. Assume that the chemical
is uniformly distributed throughout the pond. Write a differential equation for the amount of
chemical in the pond at any time.
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• The order of a differential equation is the order of the highest-order derivatives present
in equation.

Example 3. Determine the order of the following differential equations.

1. yy′′′ − 10y′′ + yv = 5y10

2. x′′ + tx′ − t3x = cos t

• A general form for an nth-order equation with variable x and unknown function y = y(x)
can be expressed as

F

(
x, y,

dy

dx
, · · · , d

ny

dxn

)
= 0, (1)

where F is a function that depends on x, y, and the derivatives of y up to the order n.
We assume that the equation holds for all x in an open interval I (a < x < b, where a or
b could be infinite).

dny

dxn
= f

(
x, y,

dy

dx
, · · · , d

n−1y

dxn−1

)
(2)

• A function ϕ(x) that when substituted by y in the equation satisfies the equation for all
x in the interval I is called a solution to the equation on I.

Example 4. Determine whether a function is a solution to the given equation.

1. tg′ = 2g, g(t) = 5t2

2. y3y′′ + 1 = 0, y(t) =
√

2x− x2
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• By an initial value problem for an nth-order differential equation

F

(
x, y,

dy

dx
, · · · , d

ny

dxn

)
= 0

we mean: Find a solution to the differential equation on an interval I that satisfies at x0

the n initial conditions:

y(x0) = y0,
dy

dx
(x0) = y1, ...,

dn−1y

dxn−1 (x0) = yn−1,

where x0 ∈ I and y0, y1,...,yn−1 are given constants.

• In case of a first-order equation F
(
x, y, dy

dx

)
, the initial conditions reduce to the single

requirement
y(x0) = y0

• In case of a second-order equation, the initial conditions have the form

y(x0) = y0,
dy

dx
(x0) = y1.

• An ODE is linear if it has format

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1 + a1(x)
dy

dx
+ a0(x)y = F (x),

where an(x), an−1(x),...,a0(x) and F (x) depend only on variable x. If an ODE is not
linear, then we call it nonlinear.

Example 5. For each of the differential equations indicate whether it is linear or nonlinear.

1. ln(x)
d2y

dx2
+ 3ex

dy

dx
− y sinx = 0

2. 2y′′ − 3y2 = ex

3.
d3y

dx3
+ (x2 − 1)y + cosx = 0

4. y′′ − sin (x + y)y′ + (x2 + 1)y = 0

5. y′′ − exy = cos(2x + y)
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Direction Fields.
One technique that is useful in graphing the solutions to a first-order differential equation

is to sketch the direction field for the equation. To describe this method, we need to make a
general observation.

Namely, a first-order equation
dy

dx
= f(x, y)

specifies a slope at each point in the xy-plane where f is defined.
A plot of short line segments drawn at various points in the xy-plane showing the slope of

the solution curve there is called a direction field for the differential equation. Because the
direction field gives the ”flow of solutions”, it facilitates the drawing of any particular solution
(such as the solution to an initial value problem).

Example 6.

1. Sketch a direction field for y′ = t + y

2. Using the direction field, describe the behavior of the solution as t→ ±∞.

We can get directional field using MatLab.
>>[t,y]=meshgrid(-3:0.2:2, -1:0.2:5);

>> s=t+y;

>> quiver(t,y,ones(size(s)), s), axis tight

All array must have the same size, therefore we do
>>[t,y]=meshgrid(-3:0.2:2, -1:0.2:5);

>> s=t+y;

>> l=sqrt(1+s.∧ 2);

>> quiver(t,y,1./l,s./l,0.5), axis tight

To graph solutions, we do
>>[t,y]=meshgrid(-3:0.2:2, -1:0.2:5);

>> s=t+y;

>> l=sqrt(1+s.∧ 2);

>> quiver(t,y,1./l,s./l,0.5), axis tight

>> f=@(t,y)t+y;

>> hold on

>> for y0=-3:1:2

[ts,ys]=ode45(f,[-3,2],y0); plot(ts,ys)

end

>> hold off

Example 7.

1. Sketch a direction field for y′ = t2 − y

2. Using the direction field, describe the behavior of the solution as t→ ±∞.
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