1. $e^{2+\frac{3 \pi}{4} i}=$
2. A mass weighing 3 lb stretches a spring 3 in . If the mass is pushed upward, contracting the spring a distance of 1 in . then set in motion with a downward velocity of $2 \mathrm{ft} / \mathrm{s}$, and if there is no damping, find the position u of the mass at any time t. Determine the frequency, period and amplitude of the motion.
3. A mass weighting 8 lb is attached to a spring hanging from the ceiling and comes to rest at its equilibrium position. At $t=0$, an external force $F(t)=2 \cos 2 t \mathrm{lb}$ is applied to the system. If the spring constant is $10 \mathrm{lb} / \mathrm{ft}$ and the damping constant is $1 \mathrm{lb}-\mathrm{sec} / \mathrm{ft}$, find the steady-state solution for the system. What is the resonance force for the system?
4. Find the general solution of the equation
(a) $y^{\prime \prime}-2 y^{\prime}+5 y=0$
(b) $y^{\prime \prime}+6 y^{\prime}+9 y=\frac{e^{-3 x}}{1+2 x}$
(c) $4 y^{\prime \prime}+y^{\prime}=4 x^{3}+48 x^{2}+1$
5. Given that $y_{1}(x)=x$ is a solution to

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

find a second solution of this equation on $(0,+\infty)$.
6. Find the Laplace transform of the given function using the definition of the Laplace transform.
(a) $f(x)=t e^{3 t}$.
(b) $f(t)= \begin{cases}e^{5 t} & 0 \leq t<6 \\ 3 & t \geq 6\end{cases}$
7. Find the Laplace transform of
(a) $f(t)=t \cos 3 t$
(b) $f(t)=t^{2} e^{-2 t}$
8. Find the inverse Laplace transform of the given function.
(a) $F(s)=\frac{2 s+6}{s^{2}-4 s+8}$
(b) $F(s)=\frac{e^{-2 s}}{s^{2}+s-2}$

