Due Thursday, Feb. 4 at the beginning of class.

1. Find the general solution of the equation:
(a) $\frac{d y}{d x}=\frac{1-x^{2}}{y^{2}}$
(b) $(t+y+1) d t-d y=0$
(c) $y^{-1} d y+y e^{\cos x} \sin x d x=0$
(d) $\left(x^{2}+1\right) \frac{d y}{d x}+x y=x$
(e) $\left(x+x y^{2}\right) d x+e^{x^{2}} y d y=0$
2. Solve the initial value problem:
(a) $\frac{d y}{d x}-\frac{y}{x}=x e^{x}, \quad y(1)=e-1$
(b) $\frac{d y}{d x}=2 \sqrt{y+1} \cos x, \quad y(\pi)=0$
(c) $t^{3} \frac{d x}{d t}+3 t^{2} x=t, \quad x(2)=0$
(d) $\sqrt{y} d x+(1+x) d y=0, \quad y(0)=1$
(e) $\sin x \frac{d y}{d x}+y \cos x=x \sin x \quad y\left(\frac{\pi}{2}\right)=2$
3. Suppose a brine containing 0.2 kg of salt per liter runs into a tank initially filled with 500 L of water containing 5 kg of salt. The brine enters the tank at a rate of $5 \mathrm{~L} / \mathrm{min}$. The mixture, kept uniform by stirring, is flowing out at a rate of $5 \mathrm{~L} / \mathrm{min}$. Find a concentration, in kilograms per liter, of salt in the tank after 10 min .
4. College graduate borrows $\$ 10,000$ to buy a car. The lender charges interest at an annual rate of 10%. Assuming that the interest is compounded continuously and that the borrows makes payment continuously at a constant annual rate k, determine the payment rate k that is required to pay off the loan in 5 years. Also determine how much interest is paid during the 5 -year period.
