Due Thursday, Feb. 18 at the beginning of class.

1. Find an integrating factor and then solve the equation.
(a) $\left(3 x^{2}+y\right) d x+\left(x^{2} y-x\right) d y=0$
(b) $\left(2 y^{2}+2 y+4 x^{2}\right) d x+(2 x y+x) d y=0$
2. Find an integrating factor of the form $x^{n} y^{m}$ and then solve the equation

$$
\left(2 y^{2}-6 x y\right) d x+\left(3 x y-4 x^{2}\right) d y=0
$$

3. Find a general solution to the given differential equation.
(a) $y^{\prime \prime}+8 y^{\prime}+16 y=0$
(b) $y^{\prime \prime}-y^{\prime}-2 y=0$
(c) $y^{\prime \prime}-5 y^{\prime}+6 y=0$
(d) $4 y^{\prime \prime}-4 y^{\prime}+y=0$
4. Solve the given initial value problem.
(a) $y^{\prime \prime}+2 y^{\prime}-8 y=0, y(0)=3, y^{\prime}(0)=-12$
(b) $y^{\prime \prime}+2 y^{\prime}+y=0, y(0)=2, y^{\prime}(0)=1$
5. Determine the longest interval in which the given initial value problem is certain to have a unique solution. Do not solve the problem.
(a) $\left(1+t^{2}\right) y^{\prime \prime}+t y^{\prime}-y=\tan t, y(1)=y_{0}, y^{\prime}(1)=y_{1}$.
(b) $t(t-3) y^{\prime \prime}+2 t y^{\prime}-y=t^{2}, y(1)=y_{0}, y^{\prime}(1)=y_{1}$.
(c) $e^{t} y^{\prime \prime}+\frac{y^{\prime}}{t-3}+y=\ln t, y(1)=y_{0}, y^{\prime}(1)=y_{1}$.
6. Find the Wronskian for the given pair of functions.
(a) $y_{1}(t)=e^{3 t}, y_{2}(t)=e^{-4 t}$.
(b) $y_{1}(t)=e^{-t} \cos (2 t), y_{2}(t)=e^{-t} \sin (2 t)$.
