Due Thursday, March 24 at the beginning of class.

1. A mass weighting 8 lb is attached to a spring hanging from the ceiling and comes to rest at its equilibrium position. At $t=0$, an external force $F(t)=2 \cos 2 t \mathrm{lb}$ is applied to the system. If the spring constant is $10 \mathrm{lb} / \mathrm{ft}$ and the damping constant is $1 \mathrm{lb}-\mathrm{sec} / \mathrm{ft}$, find the steady-state solution for the system. What is the resonance force for the system?
2. Use definition to find the Laplace transform of the given function.
(a) $f(t)=e^{6 t}$
(b) $f(t)= \begin{cases}1-t, & 0<t<1, \\ 0, & t>1 .\end{cases}$
3. Use the table and properties of Laplace transform to determine the following transforms.
(a) $\mathcal{L}\left\{t^{3}-t e^{t}+e^{4 t} \cos t\right\}$
(b) $\mathcal{L}\left\{t \sin ^{2} t\right\}$ (HINT: use the half-angle identity)
(c) $\mathcal{L}\left\{e^{-2 t} \sin 2 t+e^{3 t} t^{2}\right\}$
4. Find the inverse Laplace transform of the given function.
(a) $\frac{4}{s^{2}+9}$
(b) $\frac{2 s+16}{s^{2}+4 s+13}$
(c) $\frac{5}{(s+2)^{4}}$
