Due Thursday, April 6 at the beginning of class.
If you use convolutions, please write your answer in terms of convolution integrals.

1. Find the Laplace transform of the given function
(a) $f(t)= \begin{cases}0, & 0 \leq t<1, \\ 6 t-5, & 1 \leq t<3, \\ t^{2}, & t \geq 3\end{cases}$
(b) $f(t)=\int_{0}^{t} e^{-(t-\tau)} \sin \tau d \tau$
2. Find the inverse Laplace transform of
(a) $\frac{e^{-2 s}-3 e^{-7 s}}{(s+5)^{2}}$
(b) $\frac{(s-2) e^{-s}}{s^{2}-4 s+3}$
(c) $\frac{1}{(s+1)^{2}\left(s^{2}+4\right)}$
3. Solve the initial value problem using the method of Laplace transform.
(a) $y^{\prime \prime}+y=g(t), y(0)=0, y^{\prime}(0)=1, g(t)= \begin{cases}t / 2, & 0 \leq t<6, \\ 3, & t \geq 6 .\end{cases}$
(b) $y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=t-u_{\pi / 2}(t)\left(t-\frac{\pi}{2}\right), y(0)=y^{\prime}(0)=0$
(c) $y^{\prime \prime}+4 y=\delta(t-\pi)-\delta(t-2 \pi), y(0)=y^{\prime}(0)=0$
4. Express the solution of the initial value problem

$$
4 y^{\prime \prime}+4 y^{\prime}+17 y=g(t), \quad y(0)=y^{\prime}(0)=0
$$

in terms of a convolution integral.

