Chapter 2. First Order Differential Equations Section 2.2 Separable Equations

$$
\frac{d y}{d x}=f(x, y)
$$

Sometimes a function $f(x, y)$ can be represented as a product of two functions, one of which depens ONLY on x, another depens ONLY on y, or $f(x, y)=g(x) h(y)$. Then

$$
\frac{d y}{d x}=g(x) h(y)
$$

Definition. A differential equation $y^{\prime}=f(x, y)$ is called separable if it can be written in the form

$$
M(x) d x+N(y) d y=0
$$

Example 1. Determine whether the given equation is separable.

1. $(t-2 y)^{2} y^{\prime}=2$
2. $y^{4} e^{y}+\left(t^{3}+1\right) y^{\prime}=y^{\prime}\left(t^{3}+1\right) e^{2 y}$
3. $y x \ln x d x-\sqrt{y} d y+x \ln x d x=0$
4. $y^{\prime}=\cot ^{2}\left(\frac{x}{2}+y-1\right)+\frac{1}{2}$

How to solve a separable equation?

Example 2. Solve the equations/initial value problems:

1. $x y d x+(x+1) d y=0$
2. $\left(x^{2}-1\right) y^{\prime}+2 x y^{2}=0, \quad y(0)=1$
3. $x y d x-\sqrt{x^{2}+1} \ln ^{2} y d y=0$
4. $x \cos ^{2} y d x-\mathrm{e}^{x} \sin 2 y d y=0, \quad y(0)=0$
