- Linear equations.

Theorem 1. Suppose $p(t)$ and $q(t)$ are continuous on some interval I that contains the point t_{0}. Then for any choice of initial value y_{0}, there exists a unique solution $y(t)$ on I to the initial value problem

$$
y^{\prime}+p(t) y=q(t), \quad y\left(t_{0}\right)=y_{0}
$$

Example 1. Determine (without solving the problem) an interval in which the solution of the given IVP is certain to exist:

$$
(t-3) y^{\prime}+(\ln t) y=2 t
$$

1. $y(1)=2$
2. $y(5)=6$

- Nonlinear equations.

Theorem 2. Let the functions f and $\frac{\partial f}{\partial y}$ are continuous in some rectangle $\alpha<t<\beta$, $\gamma<y<\delta$ containing the point $\left(t_{0}, y_{0}\right)$. Then, in some interval $t_{0}-h<t<t_{0}+h$ contained $\alpha<t<\beta$, there is a unique solution of the initial value problem

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

Remarks:

1. By this theorem we can guarantee the existence of solution only for values of t which are suffiently closed to t_{0}, but not for all t.
2. Geometric consequence of the theorem is that two integral curves never intersect each other.
3. The condition " $\frac{\partial f}{\partial y}$ is continuous in some rectangle..." is important for uniqueness.

Example 2. Solve the initial value problem

$$
y^{\prime}=y^{1 / 3}, y(0)=0
$$

Example 3. For the IVP

$$
y^{\prime}=\frac{\ln |t y|}{1-t^{2}+y^{2}}
$$

state where in the $t y$-plane the hypotheses of Theorem 2 are satisfied.

