Chapter 3. Second Order Linear Equations Section 3.1 Homogeneous Equations with Constant Coefficients

A second order ordinary differential equation has the form

$$
\frac{d^{2} y}{d t^{2}}=f\left(t, y, \frac{d y}{d t}\right)
$$

where f is some given function.
An initial value problem consists of a differential equation together with the pair of initial conditions

$$
y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{1} .
$$

A second order ordinary differential equation is said to be linear if it is written in the form

$$
P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=G(t)
$$

or

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

If $g(t)=0$, then the equation is called homogeneous. Otherwise, the equation is called nonhomogeneous.

We begin our discussion with homogeneous equations with constant coefficients

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

where a, b, c are constants.
We try to find a solution of the form $y=\mathrm{e}^{r t}$.

Definition. An equation

$$
a r^{2}+b r+c=0
$$

is called the auxiliary equation or characteristic equation associated with equation $a y^{\prime \prime}+$ $b y^{\prime}+c y=0$.

If $b^{2}-4 a c>0$, then the auxiliary equation has two distinct real roots r_{1} and r_{2}. Then

$$
y(x)=c_{1} \mathrm{e}^{r_{1} t}+c_{2} \mathrm{e}^{r_{2} t}
$$

is the general solution to the equation.

If $b^{2}-4 a c=0$, then the auxiliary equation has a repeated root $r \in \mathbf{R}, r=-\frac{b}{2 a}$. In this case,

$$
y(x)=c_{1} \mathrm{e}^{r x}+c_{2} t \mathrm{e}^{r t}=\left(c_{1}+c_{2} t\right) \mathrm{e}^{r t}
$$

is the general solution to the equation.
Example 1. Find the general solution to the given equation
(a) $y^{\prime \prime}-y^{\prime}-2 y=0$.
(b) $y^{\prime \prime}+6 y^{\prime}+9 y=0$.

Example 2. Solve the given initial value problems.
(a) $y^{\prime \prime}+y^{\prime}=0, y(0)=2, y^{\prime}(0)=1$.
(b) $y^{\prime \prime}-4 y^{\prime}+4 y=0, y(1)=1, y^{\prime}(1)=1$.

