Section 3.2 Solutions of linear homogeneous equations; the Wronskian.
A linear second order equation is an equation that can be written in the form

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+p(t) \frac{d y}{d t}+q(t) y=g(t) \tag{1}
\end{equation*}
$$

Associated homogeneous equation for (1) is

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Let's consider the expression on the left-hand side of equation (2),

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t) \tag{3}
\end{equation*}
$$

Given any function y with a continuous second derivative on the interval I, then (3) generates a new function

$$
\begin{equation*}
L[y]=y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t) \tag{4}
\end{equation*}
$$

What we have done is to associate with each function y the function $L[y]$. This function L is defined on a set of functions. Its domain is the collection of functions with continuous second derivatives; its range consists of continuous functions; and the rule of correspondence is given by (4). We will call this mappings operators. Because L involves differentiation, we refer to L as a differential operator.

The image of a function y under the operator L is the function $L[y]$. If we want to evaluate this image function at some point t, we write $L[y](t)$.

Example 1. Let $L[y](t)=t^{2} y^{\prime \prime}(t)-3 t y^{\prime}(t)-5 y(t)$. Compute

1. $L[\cos t]$
2. $L\left[t^{-1}\right]$;
3. $L\left[\mathrm{e}^{r t}\right], r$ a constant.

There are basic differentiation operators with respect to t :

$$
D y=\frac{d y}{d t}, \quad D^{2} y=\frac{d^{2} y}{d t^{2}}, \ldots, D^{n} y=\frac{d^{n} y}{d t^{n}}
$$

Using these operators we can express L defined in (4) as

$$
L[y]=D^{2} y+p D y+q y=\left(D^{2}+p D+q\right) y
$$

When p and q are constants, we can even treat $D^{2}+p D+q$ as a polynomial in D and factor it.

The differential operator L defined by (4) has two very important properties.
Lemma. Let $L[t]=y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)$. If y, y_{1}, and y_{2} are any twice-differentiable functions on the interval I and if c is any constant, then

$$
\begin{gather*}
L\left[y_{1}+y_{2}\right]=L\left[y_{1}\right]+L\left[y_{2}\right], \tag{5}\\
L[c y]=c L[y] \tag{6}
\end{gather*}
$$

Any operator that satisfied satisfies properties (5) and (6) for any constant c and any functions y, y_{1}, and y_{2} in its domain is called a linear operator and we can say that " L preserves linear combination". If (5) or (6) fails to hold, the operator is nonlinear.

Lemma says that the operator L, defined by (4) is linear.
Theorem 1 (Principle of superposition). Let y_{1} and y_{2} be solutions to the homogeneous equation (2). Then any linear combination $C_{1} y_{1}+C_{2} y_{2}$ of y_{1} and y_{2}, where C_{1} and C_{2} are constants, is also the solution to (2).

Example 2. Verify that $y_{1}(t)=1$ and $y_{2}(t)=t^{1 / 2}$ are solutions of the differential equation $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$ for $t>0$. Then show that $y=c_{1}+c_{2} t^{1 / 2}$ is not, in general, a solution of this equation. Explain why this result does not contradict Theorem 1.

Theorem 2 (existence and uniqueness of solution). Suppose $p(t), q(t)$, and $g(t)$ are continuous on some interval (a, b) that contains the point t_{0}. Then, for any choice of initial values y_{0}, y_{1} there exists a unique solution $y(t)$ on the whole interval (a, b) to the initial value problem

$$
\begin{aligned}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y & =g(t), \\
y\left(t_{0}\right)=y_{0}, \quad y^{\prime}(0) & =y_{1} .
\end{aligned}
$$

Example 3. Find the largest interval for which Theorem 2 ensures the existence and uniqueness of solution to the initial value problem

$$
\begin{aligned}
& e^{t} y^{\prime \prime}-\frac{y^{\prime}}{t-3}+y=\ln t \\
& y(1)=y_{0}, \quad y^{\prime}(1)=y_{1},
\end{aligned}
$$

where y_{0} and y_{1} are real constants.

Fundamental solutions of homogeneous equations

Theorem 3. Let y_{1} and y_{2} denote two solutions on I to

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

where $p(t)$ and $q(t)$ are continuous on I. Suppose at some point $t_{0} \in I$ these solutions satisfy

$$
\begin{equation*}
y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{1}^{\prime}\left(t_{0}\right) y_{2}\left(t_{0}\right) \neq 0 \tag{7}
\end{equation*}
$$

Then every solution to (2) on I can be expressed in the form

$$
\begin{equation*}
y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t) \tag{8}
\end{equation*}
$$

where C_{1} and C_{2} are constants.
Definition For any two differentiable functions y_{1} and y_{2}, the determinant

$$
W\left[y_{1}, y_{2}\right](t)=\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)
$$

is called the Wronskian of y_{1} and y_{2}.

Example 4. Find the Wronskian for the functions $e^{t} \sin t, e^{t} \cos t$.

Example 5. If the Wronskian of f and g is $3 e^{4 t}$, and if $f(t)=e^{2 t}$, find $g(t)$.

Definition 2. A pair of solutions $\left\{y_{1}, y_{2}\right\}$ to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ on I is called fundamental solution set if

$$
W\left[y_{1}, y_{2}\right]\left(t_{0}\right) \neq 0
$$

at some $t_{0} \in I$.

