
Section 3.8 Forced vibrations

Let’s investigate the effect of a cosine forcing function on the system governed by the
differential equation

my′′ + by′ + ky = F0 cos γt,

where F0, γ are nonnegative constants and b2 < 4mk (the system is underdamped).
The general solution to this equation is

y(t) = Ae−(b/2m)t sin

(
√
4mk − b2

2m
t+ φ

)

+

+
F0

√

(k −mγ2)2 + b2γ2
sin(γt+ θ),

where A, φ are constants and tan θ = k−mγ2

bγ
.

yh(t) = Ae−(b/2m)t sin

(
√
4mk − b2

2m
t+ φ

)

is called the transient part of solution. yh → 0 as t → ∞.

yp(t) =
F0

√

(k −mγ2)2 + b2γ2
sin(γt+ θ)

is the offspring of the external forcing function f(t) = F0 cos γt. yp is sinusoidal with angular
frequency γ. yp is out of phase with f(t) by the angle θ − π/2, and its magnitude is different
by the factor

1
√

(k −mγ2)2 + b2γ2

yp is called the steady-state solution.

The factor
1

√

(k −mγ2)2 + b2γ2
is called the frequency gain or gain factor.

Example 1. A 2-kg mass is attached to a spring with stiffness k = 45 N/m. At time
t = 0, an external force f(t) = 12 cos 3t is applied to the system. The damping constant for
the system is 4 N-sec/m. Determine the steady-state solution for the system.
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In general, the amplitude of the steady-state solution depends on γ and is given by

A(γ) = F0M(γ) =
1

√

(k −mγ2)2 + b2γ2

M(γ) is the frequency gain. The graph of M(γ) is called the frequency response curve or
resonance curve for the system.

M(0) =
1

k
, M(γ) → 0 as γ → ∞.

M ′(γ) = − γ(b2 − 2m(k −mγ2))

[(k −mγ2)2 + b2γ2]3/2
= 0

if and only if

γ = 0 or γ = γr =

√

k

m
− b2

2m2

When the system is critically damped or overdamped, M ′(γ) = 0 only when γ = 0. In this
case M(γ) increases from 1/k to 0 as γ → ∞.

When b2 − 2mk < 0, then M ′(γ) = 0 at γr =
√

k
m
− b2

2m2 , then

M(γr) =
1

b
√

k
m
− b2

2m2

The value γr/2π is called the resonance frequency for the system. When the system is
stimulated by an external force as this frequency, it is said to be at resonance.

Let k = m = 1, then M(γ) =
1

√

(1− γ2)2 + b2γ2
, for b <

√
2 the resonance frequency is

γr =
1

2π

√

1− b2

2

As b → 0 γr/2π →
√
k/m/2π = 1/2π. 1/2π is the natural frequency for the undamped system.

Consider the undamped system (b = 0) with forcing term F0 cos γt. This system is governed
by

m
d2y

dt2
+ ky = F0 cos γt

y(t) = yh(t) + yp(t)

yh(t) = A sin(ωt+ φ), ω =
√

k/m

If γ 6= ω

yp(t) =
F0

k −mγ2
sin(γt + θ)

If γ = ω

yp(t) =
F0

2mω
t sinωt
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Hence, in the undamped resonant case (γ = ω),

y(t) = A sin(ωt+ φ) +
F0

2mω
t sinωt

yp(t) oscillates between − F0

2mω
and

F0

2mω
. As t → ∞, the maximum magnitude of yp(t) →

∞.

If the damping constant b is very small, the system is subject to large oscillations

when the forcing function has a frequency near the resonance frequency for the

system.

When the mass-spring system is hung vertically, the gravitational force can be ignored if
y(t) is measured from the equilibrium position. The equation of motion for this system is

my′′ + by′ + ky = Fexternal,

where m is a mass, b is the damping coefficient, k is the stiffness.

Example 2. A 2-kg mass is attached to a spring hanging from the ceiling, hereby causing
the spring to stretch 20 cm upon coming to rest at equilibrium. At time t = 0 the mass is
displaced 5 cm below the equilibrium position and released. At this same instant, an external
force f(t) = 0.3 cos t N is applied to the system. If the damping constant to the system is 5
N-sec/m, determine the equation of motion for the mass. What is the resonance frequency for
the system?
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