Definition 1. Let $f(x)$ be a function on $[0, \infty)$. The Laplace transform of f is the function F defined by the integral

$$
F(s)=\int_{0}^{\infty} f(t) \mathrm{e}^{-s t} d t
$$

The domain of $F(s)$ is all the values of s for which integral exists. The Laplace transform of f is denoted by both F and $\mathcal{L}\{f\}$.

Notice, that integral in definition is improper integral.

$$
\int_{0}^{\infty} f(t) \mathrm{e}^{-s t} d t=\lim _{N \rightarrow \infty} \int_{0}^{N} f(t) \mathrm{e}^{-s t} d t
$$

whenever the limit exists.
Example 1. Determine the Laplace transform of the given function.

1. $f(t)=1, t \geq 0$.
2. $f(t)=t, t \geq 0$.
3. $f(t)=\mathrm{e}^{a t}$, where a is a constant.
4. $f(t)= \begin{cases}t^{2}, & 0<t<1, \\ 1, & 1 \leq t \leq 2, \\ 1-t, & 2<t\end{cases}$

Brief table of Laplace transform

$f(t)$	$F(s)=\mathcal{L}\{f\}(s)$
1	$\frac{1}{s}, \quad s>0$
$e^{a t}$	$\frac{1}{s-a}, \quad s>a$
$t^{n}, \quad n=1,2, \ldots$	$\frac{n!}{s^{n+1}}, \quad s>0$
$\sin b t$	$\frac{b}{s^{2}+b^{2}}, \quad s>0$
$\cos b t$	$\frac{\frac{s}{s}+b^{2}}{s^{2}}, \quad s>0$
$e^{a t} t^{n}, \quad n=1,2, \ldots$	$\frac{n!}{(s-a)^{n+1}}, \quad s>a$
$e^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b^{2}}, \quad s>a$
$e^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a$

The important property of the Laplace transform is its linearity. That is, the Laplace transform \mathcal{L} is a linear operator.

Theorem 1. (linearity of the transform) Let f_{1} and f_{2} be functions whose Laplace transform exist for $s>\alpha$ and c_{1} and c_{2} be constants. Then, for $s>\alpha$,

$$
\mathcal{L}\left\{c_{1} f_{1}+c_{2} f_{2}\right\}=c_{1} \mathcal{L}\left\{f_{1}\right\}+c_{2} \mathcal{L}\left\{f_{2}\right\} .
$$

Example 2. Determine $\mathcal{L}\left\{10+5 \mathrm{e}^{2 t}+3 \cos 2 t\right\}$.

Existence of the transform.

There are functions for which the improper integral in Definition 1 fails to converge for any value of s. For example, no Laplace transform exists for the function $\mathrm{e}^{t^{2}}$. Fortunately, the set of the functions for which the Laplace transform is defined includes many of the functions.

Definition 2. A function f is said to be piecewise continuous on a finite interval $[a, b]$ if f is continuous at every point in $[a, b]$, except possibly for a finite number of points at which $f(t)$ has a jump discontinuity.

A function $f(x)$ is said to be piecewise continuous on $[0, \infty)$ if $f(t)$ is piecewise continuous on $[0, N]$ for all $N>0$.

Definition 3. A function $f(t)$ is said to be of exponential order α if there exist positive constants T and M s.t.

$$
|f(t)| \leq M \mathrm{e}^{\alpha t}, \text { for all } t \geq T
$$

Theorem 2. If $f(t)$ is piecewise continuous on $t \rightarrow \infty$ and of exponential order α, then $\mathcal{L}\{f\}(s)$ exists for $s>\alpha$.

Properties of Laplace transform

1. $\mathcal{L}\{f+g\}=\mathcal{L}\{f\}+\mathcal{L}\{g\}$
2. $\mathcal{L}\{c f\}=c \mathcal{L}\{f\} \quad$ for any constant c
3. $\mathcal{L}\left\{\mathrm{e}^{a t} f\right\}(s)=F(s-a)$
4. $\mathcal{L}\left\{f^{\prime}\right\}(s)=s \mathcal{L}\{f\}(s)-f(0)$
5. $\mathcal{L}\left\{f^{\prime \prime}\right\}(s)=s^{2} \mathcal{L}\{f\}(s)-s f(0)-f^{\prime}(0)$
6. $\mathcal{L}\left\{f^{(n)}\right\}(s)=s^{n} \mathcal{L}\{f\}(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-f^{(n-1)}(0)$
7. $\mathcal{L}\left\{t^{n} f(t)\right\}(s)=(-1)^{n} \frac{d^{n}}{d s^{n}}(\mathcal{L}\{f(t)\})(s)$

Inverse Laplace Transform.

Definition 3. Given a function $F(s)$, if there is a function $f(t)$ that is continuous on $[0, \infty)$ and satisfies

$$
\mathcal{L}\{f\}(s)=F(s),
$$

then we say that $f(t)$ is the inverse Laplace transform of $F(s)$ and employ the notation $f(t)=\mathcal{L}^{-1}\{F\}(t)$.

Example 3. Determine the inverse Laplace transform of the given function.

1. $F(s)=\frac{2}{s^{3}}$.
2. $F(s)=\frac{2}{s^{2}+4}$.
3. $F(s)=\frac{s+1}{s^{2}+2 s+10}$.
4. $F(s)=\frac{s}{s^{2}+s-2}$,
5. $F(s)=\frac{3 s^{2}+5 s+3}{s^{4}-s^{2}}$
