Definition. The unit step function or Heaviside function is defined by

$$
u_{c}(t)=\left\{\begin{array}{l}
0, \quad t<c, \\
1, \quad t \geq c,
\end{array} \quad c \geq 0 .\right.
$$



Graph of $y=u_{c}(t)$
Example 1. Express $f(t)$ in terms of $u_{c}(t)$ if

1. $f(t)= \begin{cases}0, & 0 \leq t<3, \\ -2, & 3 \leq t<5, \\ 2, & 5 \leq t<7, \\ 1, & t \geq 7\end{cases}$
2. $f(t)= \begin{cases}t, & 0 \leq t<1, \\ t-1, & 1 \leq t<2, \\ t-2, & 2 \leq t<3, \\ 0, & t \geq 3\end{cases}$

$$
\mathcal{L}\left\{u_{c}(t)\right\}=\frac{e^{-c s}}{s}, \quad s>0
$$

Theorem. If $F(s)=\mathcal{L}\{f(t)\}$ exists for $s>a \geq 0$, and $c$ is a positive constant, then

$$
\mathcal{L}\left\{u_{c}(t) f(t-c)\right\}=e^{-c s} \mathcal{L}\{f(t)\}=e^{-c s} F(s), \quad s>a
$$

Conversely, if $f(t)=\mathcal{L}^{-1}\{F(s)\}$, then

$$
u_{c}(t) f(t-c)=\mathcal{L}^{-1}\left\{e^{-c s} F(s)\right\}
$$

Example 2. Find the Laplace transform of the following functions:

1. $f(t)=u_{1}(t)+2 u_{3}(t)-6 u_{4}(t)$
2. $f(t)=(t-3) u_{2}(t)-(t-2) u_{3}(t)$
3. $f(t)= \begin{cases}0, & t<1, \\ t^{2}-2 t+2, & t \geq 1,\end{cases}$

Example 3. Find the inverse Laplace transform of the given function.

1. $F(s)=\frac{e^{-2 s}}{s^{2}+s-2}$
2. $F(s)=\frac{2(s-1) e^{-2 s}}{s^{2}-2 s+2}$
