Section 6.6 The convolution integral.

Theorem. If $F(s) = \mathcal{L}\{f(t)\}$ and $G(s) = \mathcal{L}\{g(t)\}$ both exist for $s > a \ge 0$, then

$$H(s) = F(s)G(s) = \mathcal{L}\{h(t)\}, \quad s > a,$$

where

$$h(t) = \int_0^1 f(t-\tau)g(\tau)d\tau = \int_0^1 f(\tau)g(t-\tau)d\tau.$$

The function h is known as a **convolution** of f and g (h(t) = (f * g)(t)); the integrals in the formula for h(t) are known as **convolution integrals**.

Properties of the convolution.

- 1. f * g = g * f
- 2. $f * (g_1 + g_2) = f * g_1 + f * g_2$
- 3. (f * g) * h = f * (g * h)
- 4. f * 0 = 0 * f = 0

Example 1. Find the Laplace transform of the function

$$f(t) = \int_0^1 (t - \tau)^2 \cos 2\tau \ d\tau$$

Example 2. Find
$$\mathcal{L}^{-1}\left\{\frac{1}{s^4(s^2+1)}\right\}$$

Example 3. Express the solution of the initial value problem

$$y'' + \omega^2 y = g(t), \quad y(0) = 0, y'(0) = 1$$

in terms of a convolution integral.