Due Thursday, Feb. 2 at the beginning of class.

1. Find the general solution of the equation. Do not forget to find constant solutions for separable equations, if any.
(a) $\frac{d y}{d x}=\frac{1-x^{2}}{y^{2}}$
(b) $(t+y+1) d t-d y=0$
(c) $y^{-1} d y+y e^{\cos x} \sin x d x=0$
(d) $\left(x^{2}+1\right) \frac{d y}{d x}+x y=x$
(e) $\left(x+x y^{2}\right) d x+e^{x^{2}} y d y=0$
2. Solve the initial value problem:
(a) $\frac{d y}{d x}-\frac{y}{x}=x e^{x}, \quad y(1)=e-1$
(b) $\frac{d y}{d x}=2 \sqrt{y+1} \cos x, \quad y(\pi)=0$
(c) $t^{3} \frac{d x}{d t}+3 t^{2} x=t, \quad x(2)=0$
(d) $\sqrt{y} d x+(1+x) d y=0, \quad y(0)=1$
(e) $\sin x \frac{d y}{d x}+y \cos x=x \sin x \quad y\left(\frac{\pi}{2}\right)=2$
3. Suppose a brine containing 0.2 kg of salt per liter runs into a tank initially filled with 500 L of water containing 5 kg of salt. The brine enters the tank at a rate of $5 \mathrm{~L} / \mathrm{min}$. The mixture, kept uniform by stirring, is flowing out at a rate of $5 \mathrm{~L} / \mathrm{min}$. Find a concentration, in kilograms per liter, of salt in the tank after 10 min .
4. An object of mass 8 kg is given an upward initial velocity of $20 \mathrm{~m} / \mathrm{sec}$ and then allowed to fall under the influence of gravity. Assume that the force in newtons due to the air resistance is $16 v$, where v is the velocity of the object in $\mathrm{m} / \mathrm{sec}$. Determine the equation of motion of the object. If the object is initially 100 m above the ground, determine when the object will strike the ground.
5. Consider the initial value problem

$$
t y^{\prime}+3 y=5 t^{2}, \quad y(2)=5
$$

Using MatLab, find the solution to the initial value problem.
Determine the behavior as t approaches 0 from the right and as t becomes large. This can be done by plotting the solution on intervals such as $0.5 \leq t \leq 5$ and $0.2 \leq t \leq 20$.

