Due Thursday, Feb. 16 at the beginning of class.

1. Show that the equation is exact and then solve it.
(a) $\left(1+e^{x} y+x e^{x} y\right) d x+\left(x e^{x}+2\right) d y=0$
(b) $\frac{d y}{d x}=-\frac{2 x y^{2}+1}{2 x^{2} y}$
(c) $\left(2 x y-\sec ^{2} x\right) d x+\left(x^{2}+2 y\right) d y=0$
2. Find an integrating factor and then solve the equation.
(a) $\left(3 x^{2}+y\right) d x+\left(x^{2} y-x\right) d y=0$
(b) $\left(2 y^{2}+2 y+4 x^{2}\right) d x+(2 x y+x) d y=0$
3. Find an integrating factor of the form $x^{n} y^{m}$ and then solve the equation

$$
\left(2 y^{2}-6 x y\right) d x+\left(3 x y-4 x^{2}\right) d y=0
$$

4. Determine the longest interval in which the given initial value problem is certain to have a unique solution. Do not solve the problem.
(a) $\left(1+t^{2}\right) y^{\prime \prime}+t y^{\prime}-y=\tan t, y(1)=y_{0}, y^{\prime}(1)=y_{1}$.
(b) $t(t-3) y^{\prime \prime}+2 t y^{\prime}-y=t^{2}, y(1)=y_{0}, y^{\prime}(1)=y_{1}$.
(c) $e^{t} y^{\prime \prime}+\frac{y^{\prime}}{t-3}+y=\ln t, y(1)=y_{0}, y^{\prime}(1)=y_{1}$.
5. Find the Wronskian for the given pair of functions.
(a) $y_{1}(t)=e^{3 t}, y_{2}(t)=e^{-4 t}$.
(b) $y_{1}(t)=e^{-t} \cos (2 t), y_{2}(t)=e^{-t} \sin (2 t)$.
6. If the Wronskian of f and g is $3 e^{4 t}$, and if $f(t)=e^{2 t}$, find $g(t)$.
