We'll try to find the solution of the initial value problem

$$
\begin{equation*}
\frac{d y}{d x}=f(t, x), \quad y\left(x_{0}\right)=y_{0} \tag{1}
\end{equation*}
$$

numerically

- The Euler of tangent line method.

The main idea of this method is to construct a polygonal (broken line) approximation to the solutions of the problem (1).

Assume that the the problem (1) has a unique solution $\varphi(x)$ in some interval centered at x_{0}. Let h be a fixed positive number (called the step size) and consider the equally spaced points

$$
x_{n}:=x_{0}+n h, \quad n=0,1,2, \ldots
$$

The construction of values y_{n} that approximate the solution values $\varphi\left(x_{n}\right)$ proceeds as follows. At the point $\left(x_{0}, y_{0}\right)$, the slope of the solution to (1) is given by $d y / d x=f\left(x_{0}, y_{0}\right)$. Hence, the tangent line to the curve $y=\varphi(x)$ at the initial point $\left(x_{0}, y_{0}\right)$ is

$$
\begin{gathered}
y-y_{0}=f\left(x_{0}, y_{0}\right)\left(x-x_{0}\right), \quad \text { or } \\
y=y_{0}+f\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)
\end{gathered}
$$

Using the tangent line to approximate $\varphi(x)$, we find that for the point $x_{1}=x_{0}+h$

$$
\varphi\left(x_{1}\right) \approx y_{1}:=y_{0}+f\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)
$$

Next, starting at the point $\left(x_{1}, y_{1}\right)$, we construct the line with slope equal to $f\left(x_{1}, y_{1}\right)$. If we follow the line in stepping from x_{1} to $x_{2}=x_{1}+h$, we arrive at the approximation

$$
\varphi\left(x_{2}\right) \approx y_{2}:=y_{1}+f\left(x_{1}, y_{1}\right)\left(x-x_{1}\right)
$$

Repeating the process, we get

$$
\begin{gathered}
\varphi\left(x_{3}\right) \approx y_{3}:=y_{2}+f\left(x_{2}, y_{2}\right)\left(x-x_{2}\right) \\
\varphi\left(x_{4}\right) \approx y_{4}:=y_{3}+f\left(x_{3}, y_{3}\right)\left(x-x_{3}\right), \text { etc. }
\end{gathered}
$$

This simple procedure is Euler's method and can be summarized by the recursive formulas

$$
\begin{gather*}
x_{n+1}:=x_{0}+(n+1) h \tag{2}\\
y_{n+1}:=y_{n}+f\left(x_{n}, y_{n}\right) h, \quad n=0,1,2, \ldots \tag{3}
\end{gather*}
$$

The error involved in the approximation is $|e| \approx h^{2}$.

- Improved Euler's method.

We replace $f\left(x_{n}, y_{n}\right)$ by the average of its values at the two endpoints $\frac{f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n+1}\right)}{2}$. Since $x_{n+1}=x_{n}+h$ and $y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)$, then

$$
\begin{equation*}
y_{n+1}:=y_{n}+\frac{f\left(x_{n}, y_{n}\right)+f\left(x_{n}+h, y_{n}+h f\left(x_{n}, y_{n}\right)\right)}{2} h, \quad n=0,1,2, \ldots \tag{4}
\end{equation*}
$$

The error involved in the approximation is $|e| \approx h^{3}$.

- The Runge-Kutta method.

$$
\begin{align*}
& k 1=f(x, y) \\
& k 2=f\left(x+\frac{h}{2}, y+\frac{h}{2} \times k 1\right) \\
& k 2=f\left(x+\frac{h}{2}, y+\frac{h}{2} \times k 2\right) \tag{5}\\
& k 4=f(x+h, y+h \times k 3) \\
& y=y+\frac{k 1+2 \times k 2+2 \times k 3+k 4}{6} \\
& x=x+h
\end{align*}
$$

The error involved in the approximation is $|e| \approx h^{4}$.

