1. A large tank initially contains 10 L of fresh water. A brine containing $20 \mathrm{~g} / \mathrm{L}$ of salt flows into the tank at a rate of $3 \mathrm{~L} / \mathrm{min}$. The solution inside the tank is kept well stirred and flows out of the tank at a rate of $2 \mathrm{~L} / \mathrm{min}$. Determine the concentration of salt in the tank as a function of time.
2. An object with temperature 150° is placed in a freezer whose temperature is 30°. Assume that the temperature of the freezer remains essentially constant.
(a) If the object is cooled to 120° after 8 min , what will its temperature be after 18 min ?
(b) When will its temperature be 60° ?
3. Determine (without solving the problem) an interval in which the solution to the initial value problem

$$
\left(4-t^{2}\right) y^{\prime}+2 t y=3 t^{2}, \quad y(1)=-3
$$

is certain to exist.
4. Solve the initial value problem

$$
y^{\prime}=\frac{t^{2}}{1+t^{3}}, \quad y(0)=y_{0}
$$

and determine how the interval in which the solution exists depends on the initial value y_{0}.
5. Solve the following initial value problem

$$
\sqrt{y} d t+(1+t) d y=0 \quad y(0)=1
$$

6. Find the general solution of the equation

$$
\left(t^{2}-1\right) y^{\prime}+2 t y+3=0
$$

7. Given the differential equation

$$
\frac{d y}{d t}=7 y-y^{2}-10
$$

(a) Find the equilibrium solutions
(b) Sketch the phase line and determine whether the equilibrium solutions are stable, unstable, or semistable
(c) Graph some solutions
(d) If $y(t)$ is the solution of the equation satisfying the initial condition $y(0)=y_{0}$, where $-\infty<y_{0}<\infty$, find the limit of $y(t)$ when $t \rightarrow \infty$
(e) Solve the equation
8. Solve the initial value problem

$$
\left(y e^{x y} \cos (2 x)-2 e^{x y} \sin (2 x)+2 x\right) d x+\left(x e^{x y} \cos (2 x)-3\right) d y=0, \quad y(0)=-1
$$

9. Find an integrating factor for the equation

$$
\left(3 x y+y^{2}\right)+\left(x^{2}+x y\right) y^{\prime}=0
$$

and then solve the equation.
10. Solve the equation/initial value problem
(a) $6 y^{\prime \prime}-5 y^{\prime}+y=0, y(0)=4, y^{\prime}(0)=0$
(b) $4 y^{\prime \prime}-12 y^{\prime}+9 y=0$
(c) $y^{\prime \prime}+4 y^{\prime}+5 y=0, y(0)=0, y^{\prime}(0)=1$
11. Find the interval(s) on which the solution of the initial value problem

$$
x^{3} y^{\prime \prime}+\frac{x}{\sin x} y^{\prime}-\frac{2}{x-5} y=0, \quad y(2)=6, \quad y^{\prime}(2)=7
$$

is certain to exist.
12. Find the Wronskian of two functions $y_{1}(x)=x+2 x^{2}$ and $y_{2}(x)=2^{x}$.

