1. A large tank initially contains 10 L of fresh water. A brine containing $20 \mathrm{~g} / \mathrm{L}$ of salt flows into the tank at a rate of $3 \mathrm{~L} / \mathrm{min}$. The solution inside the tank is kept well stirred and flows out of the tank at the rate $2 \mathrm{~L} / \mathrm{min}$. Determine the concentration of salt in the tank as a function of time.
2. An object with temperature 150° is placed in a freezer whose temperature is 30°. Assume that the temperature of the freezer remains essentially constant.
(a) If the object is cooled to 120° after 8 min , what will its temperature be after 18 min ?
(b) When will its temperature be 60° ?
3. Determine (without solving the problem) an interval in which the solution to the initial value problem

$$
\left(4-t^{2}\right) y^{\prime}+2 t y=3 t^{2}, \quad y(1)=-3
$$

is certain to exist.
4. Solve the initial value problem

$$
y^{\prime}=\frac{t^{2}}{1+t^{3}}, \quad y(0)=y_{0}
$$

and determine how the interval in which the solution exists depends on the initial value y_{0}.
5. Solve the following initial value problem

$$
\sqrt{y} d t+(1+t) d y=0 \quad y(0)=1
$$

6. Find the general solution to the equation

$$
\left(t^{2}-1\right) y^{\prime}+2 t y+3=0
$$

7. For the equation $\frac{d y}{d t}=y^{3}-2 y^{2}+y$
(a) find the equilibrium solutions
(b) sketch the phase line and determine whether the equilibrium solutions are stable, unstable, or semistable
(c) graph some solutions
(d) if $y(t)$ is the solution of the equation satisfying the initial condition $y(0)=y_{0}$, where $-\infty \leq y_{0} \leq \infty$, find the limit of $y(t)$ when $t \rightarrow \infty$ and the limit of $y(t)$ when $t \rightarrow-\infty$
(e) solve the equation.
8. Solve the initial value problem

$$
\left(y e^{x y} \cos (2 x)-2 e^{x y} \sin (2 x)+2 x\right) d x+\left(x e^{x y} \cos (2 x)-3\right) d y=0, \quad y(0)=-1
$$

9. Find an integrating factor for the equation

$$
\left(3 x y+y^{2}\right)+\left(x^{2}+x y\right) y^{\prime}=0
$$

and then solve the equation.
10. Solve the initial value problem

$$
6 y^{\prime \prime}-5 y^{\prime}+y=0, \quad y(0)=4, y^{\prime}(0)=0
$$

11. Find the general solution to the equation

$$
4 y^{\prime \prime}-12 y^{\prime}+9 y=0
$$

12. Find the interval on which the solution of the initial value problem

$$
x^{3} y^{\prime \prime}+\frac{x}{\sin x} y^{\prime}-\frac{2}{x-5} y=0, \quad y(2)=6, \quad y^{\prime}(2)=7
$$

is certain to exist.
13. A spring is stretch 10 cm by a force of 3 N . A mass of 2 kg is hung from the spring and is also attached to a viscous damper that exerts a force of 3 N when the velocity of the mass $5 \mathrm{~m} / \mathrm{s}$. If the mass is pulled down 5 cm below its equilibrium position and given an initial velocity of $10 \mathrm{~cm} / \mathrm{s}$, determine its position u at any time. Find the quasifrequency of the motion.
14. A mass weighting 8 lb is attached to a spring hanging from the ceiling and comes to rest at its equilibrium position. At $t=0$, an external force $F(t)=2 \cos 2 t \mathrm{lb}$ is applied to the system. If the spring constant is $10 \mathrm{lb} / \mathrm{ft}$ and the damping constant is $1 \mathrm{lb}-\mathrm{sec} / \mathrm{ft}$, find the steady-state solution for the system.
15. A mass weighing 4 lb stretches a spring 1.5 in . The mass is given a positive displacement 2 in from its equilibrium position and released with no initial velocity. Assuming that there is no damping and the mass is acted on by an external force of $2 \cos 3 t \mathrm{lb}$,
(a) Formulate the initial value problem describing the motion of mass
(b) Solve the initial value problem.
(c) If the given external force is replaced by a force $4 \cos \omega t$ of frequency ω, find the value of ω for which resonance occurs.
16. Find the general solution of the equation
(a) $y^{\prime \prime}+6 y^{\prime}+9 y=\frac{e^{-3 x}}{1+2 x}$
(b) $y^{\prime \prime}+2 y^{\prime}+y=4 e^{-t}, y(0)=2, y^{\prime}(0)=1$
(c) $y^{\prime \prime}+4 y=32 \sin 2 t-32 t \cos 2 t$
17. Find the Laplace transform of the given function.
(a) $f(t)= \begin{cases}\frac{t}{2}, & 0 \leq t<6 \\ 3, & t \geq 6\end{cases}$
(b) $f(t)=\left(t^{2}-2 t+2\right) u_{1}(t)$
(c) $f(t)=\int_{0}^{t}(t-\tau)^{2} \cos 2 \tau d \tau$
(d) $f(t)=t \cos 3 t$
(e) $f(t)=e^{t} \delta(t-1)$
18. Find the inverse Laplace transform of the given function.
(a) $F(s)=\frac{2 s+6}{s^{2}-4 s+8}$
(b) $F(s)=\frac{e^{-2 s}}{s^{2}+s-2}$
19. Solve the initial value problem using the Laplace transform:
(a) $y^{\prime \prime}+4 y=\left\{\begin{array}{ll}t, & 0 \leq t<1 \\ 1, & t \geq 1\end{array}, y(0)=y^{\prime}(0)=0\right.$
(b) $y^{\prime \prime}+2 y^{\prime}+3 y=\delta(t-3 \pi), y(0)=y^{\prime}(0)=0$
(c) $y^{\prime \prime}+4 y^{\prime}+4 y=g(t), y(0)=2, y^{\prime}(0)=-3$
20. Find the general solution of the system. Classify the critical point $(0,0)$ as to type, determine whether it is stable or unstable, sketch the phase portrait.
(a) $\mathbf{x}^{\prime}=\left(\begin{array}{rr}1 & 1 \\ 4 & -2\end{array}\right) \mathbf{x}$
(b) $\mathbf{x}^{\prime}=\left(\begin{array}{rr}-3 & -1 \\ 1 & -1\end{array}\right) \mathbf{x}$
(c) $\mathbf{x}^{\prime}=\left(\begin{array}{rr}-3 & 2 \\ -1 & -1\end{array}\right) \mathbf{x}$
21. Find the general solution of the system using variation of parameters and Laplace Transform, if possible.
(a) $\mathbf{x}^{\prime}=\left(\begin{array}{rr}1 & 1 \\ 4 & -2\end{array}\right) \mathbf{x}+\binom{e^{-2 t}}{-2 e^{t}}$
(b) $\mathbf{x}^{\prime}=\left(\begin{array}{ll}4 & -2 \\ 8 & -4\end{array}\right) \mathbf{x}+\binom{t^{-3}}{-t^{-2}}$

