Section 2.1 Linear Equations.

Definition. A linear first-order equation is an equation that can be expressed in the form

$$a_1(x)\frac{dy}{dx} + a_0(x)y = b(x),$$

where $a_0(x)$, $a_1(x)$, b(x) depend only on x.

We will assume that $a_0(x)$, $a_1(x)$, b(x) are continuous functions of x on an interval I.

For now, we are interested in those linear equations for which $a_1(x)$ is never zero on I. In that case we can rewrite the equation in the **standard form**

$$\frac{dy}{dx} + P(x)y = Q(x),$$

where $P(x) = a_0(x)/a_1(x)$ and $Q(x) = b(x)/a_1(x)$ are continuous on I.

To solve the first order linear equation:

- 1. Write the equation $a_1(x)\frac{dy}{dx} + a_0(x)y = b(x)$ in the standart form $\frac{dy}{dx} + P(x)y = Q(x)$.
- 2. Find the integrating factor $\mu(x)$ solving differential equation

$$\frac{d\mu}{dx} - P(x)\mu = 0.$$

3. Integrate the equation

$$\frac{d}{dx}\left[\mu y\right] = \mu Q(x)$$

and solve for y by dividing by $\mu(x)$.

The solution

$$y(x) = \frac{1}{\mu(x)} \left[\int \mu(x) Q(x) dx + C \right]$$

where C is a constant, to the equation is called the **general solution**.

Example 1. Find the general solution to the following equations

$$1. xy' - y = -\ln x$$

$$2. \ y' - 2y = t^2 e^{2t}$$

Example 2. Solve the initial value problem

1.
$$dy - ydx - 2xe^x dx = 0$$
, $y(0) = e - 2$

2.
$$ty' + 2y = t^2 - t + 1$$
, $y(1) = \frac{1}{2}$, $t > 0$