Section 2.1 Linear Equations.

Definition. A linear first-order equation is an equation that can be expressed in the form

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=b(x)
$$

where $a_{0}(x), a_{1}(x), b(x)$ depend only on x.
We will assume that $a_{0}(x), a_{1}(x), b(x)$ are continuous functions of x on an interval I.
For now, we are interested in those linear equations for which $a_{1}(x)$ is never zero on I. In that case we can rewrite the equation in the standard form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

where $P(x)=a_{0}(x) / a_{1}(x)$ and $Q(x)=b(x) / a_{1}(x)$ are continuous on I.
To solve the first order linear equation:

1. Write the equation $a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=b(x)$ in the standart form $\frac{d y}{d x}+P(x) y=Q(x)$.
2. Find the integrating factor $\mu(x)$ solving differential equation

$$
\frac{d \mu}{d x}-P(x) \mu=0
$$

3. Integrate the equation

$$
\frac{d}{d x}[\mu y]=\mu Q(x)
$$

and solve for y by dividing by $\mu(x)$.
The solution

$$
y(x)=\frac{1}{\mu(x)}\left[\int \mu(x) Q(x) d x+C\right]
$$

where C is a constant, to the equation is called the general solution.
Example 1. Find the general solution to the following equations

1. $x y^{\prime}-y=-\ln x$
2. $y^{\prime}-2 y=t^{2} e^{2 t}$

Example 2. Solve the initial value problem

1. $d y-y d x-2 x \mathrm{e}^{x} d x=0, \quad y(0)=\mathrm{e}-2$
2. $t y^{\prime}+2 y=t^{2}-t+1, \quad y(1)=\frac{1}{2}, t>0$
