Section 2.1 Linear Equations.

Definition. A linear first-order equation is an equation that can be expressed in the form
where $a_{0}(x), a_{1}(x), b(x)$ depend only on $x . \frac{a_{1}(x) \frac{d y}{d x}+a_{0}(x) y}{a_{1}(x)}=\frac{b(x),}{a_{1}(x)}$
We will assume that $a_{0}(x), a_{1}(x), b(x)$ are continuous functions of x on an interval I.
For now, we are interested in those linear equations for which $a_{1}(x)$ is never zero on I. In that case we can rewrite the equation in the standard form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

where $P(x)=a_{0}(x) / a_{1}(x)$ and $Q(x)=b(x) / a_{1}(x)$ are continuous on I.

To solve the first order linear equation:

1. Write the equation $a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=b(x)$ in the standart form $\frac{d y}{d x}+P(x) y=Q(x)$.
2. Find the integrating factor $\mu(x)$ solving differential equation

3. Integrate the equation

$$
\mu(x): \frac{d \mu}{d x}-P(x) \mu=0
$$

want to find $\mu(x)$
sech that
$\mu(x)\left[\frac{d y}{d x}+p(x) y\right]=\frac{d}{d x}(\mu \cdot y)$
and solve for y by dividing by $\mu(x)$.

$$
\frac{d}{d x}[\mu y]=\mu Q(x)
$$

The solution

$$
y(x)=\frac{1}{\mu(x)}\left[\int \mu(x) Q(x) d x+C\right]
$$

where C is a constant, to the equation is called the general solution.

Example 1. Find the general solution to the following equations

1. $\frac{x y^{\prime}-y}{\mathrm{x}}=\frac{-\ln x}{\mathrm{x}}$

$$
\begin{aligned}
& y^{\prime}-\frac{y}{x}=-\frac{\ln x}{x} \\
& y^{\prime}-\frac{1}{x} \cdot y=-\frac{\ln x}{x} \\
& p(x)=-\frac{1}{x}, \quad Q(x)=-\frac{\ln x}{x}
\end{aligned}
$$

Integrating factor $\mu(x): \quad \frac{d \mu}{d x}-P(x) \mu=0$ or $\frac{d \mu}{d x}=P(x) \mu$

$$
\begin{aligned}
& \frac{d x}{\frac{d \mu}{d x}}=-\frac{\frac{1}{x} \mu d x}{\mu} \text { separable } \\
& \int \frac{d \mu}{\mu}=-\int \frac{d x}{x} \\
& \ln |\mu|=-\ln |x|+\ell^{2} \Rightarrow \ln |\mu|=\ln |x|^{-1} \\
& \mu=\frac{1}{x}
\end{aligned}
$$

$$
\frac{y}{x}=\frac{\ln x}{x}+\frac{1}{x}+c \text {-solve for } y
$$

$$
y=\ln x+1+c x
$$

$$
\begin{aligned}
& \frac{d}{d x}(\mu y)=Q \mu \\
& \int \frac{d}{d x}\left(\frac{y}{x}\right) d x=\int-\frac{\ln x}{x^{2}} d x \Rightarrow \quad \frac{y}{x}=-\int \frac{\ln x}{x^{2}} d x \\
& u=\ln x \\
& v^{\prime}=-\frac{1}{x^{2}} \\
& u^{\prime}=\frac{1}{x} \\
& v=\frac{1}{x} \\
& \frac{y}{x}=\frac{\ln x}{x}-\int \frac{1}{x^{2}} d x
\end{aligned}
$$

1. $x y^{\prime}-y=-\ln x$
2. $y^{\prime}-2 y=t^{2} e^{2 t} \quad$ - standard form
$P(t)=-2, Q(t)=t^{2} e^{2 t}$
Integrating factor $\mu(t): \quad \frac{d \mu}{d t}=P(t) \mu$

$$
\frac{\frac{d \mu}{d t}}{\mu} d t=\frac{-2 \mu}{\mu} d t
$$

$$
\int \frac{d \mu}{\mu}=-\int 2 d t
$$

$$
\begin{aligned}
& \frac{\mu}{\mu}=-\int 2 d t \\
& \ln |\mu|=-2 t+e^{0} \\
& \mu(t)=e^{-2 t}
\end{aligned}
$$

$\frac{d}{d t}(\mu y)=Q \mu$
$\frac{d}{d t}\left(y e^{-2 t}\right)=t^{2} e^{2 t} \cdot e^{-2 t}$

$$
\begin{aligned}
& \int \frac{d}{d t}\left(y e^{-2 t)}\right) d t=\left(t^{2} d t\right. \\
& y e^{-2 t}=\frac{t^{3}}{3}+c \\
& y(t)=\frac{t^{3}}{3} e^{2 t}+c e^{2 t}
\end{aligned}
$$

Example 2. Solve the initial value problem

1. $\frac{d y-y d x-2 x \mathrm{e}^{x} d x}{d x}=\frac{0,}{d x} \quad y(0)=\mathrm{e}-2$

$$
\frac{d y}{d x}-y-2 x e^{x}=0
$$

$$
\begin{aligned}
\frac{d y}{d x}-y= & 2 x e^{x} \\
& P(x)=-1, \quad Q(x)=2 x e^{x}
\end{aligned}
$$

Integrating factor $\mu(x): \quad \frac{d \mu}{d x}=P(x) \mu$

$$
\begin{aligned}
& \frac{d \mu}{d x} d x=-\frac{\mu d x}{\mu} \\
& \int \frac{d \mu}{\mu}=-\int d x \Rightarrow \ln |\mu|=-x+e^{0} \\
& \mu(x)=e^{-x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x}(y \mu)=\mu \cdot Q \\
& y e^{-x}=\int \overbrace{2 x e^{x}}^{Q} \cdot \overbrace{e^{-x}}^{\mu} d x=x^{2}+c \\
& y(x)=-x^{2} e^{x}+c e^{x}
\end{aligned}
$$

2. $t y^{\prime}+2 y=t^{2}-t+1, \quad y(1)=\frac{1}{2}, t>0$
