Chapter 2. First Order Differential Equations Section 2.2 Separable Equations

$$
y^{\prime}=\frac{d y}{d x}=f(x, y)
$$

Sometimes a function $f(x, y)$ can be represented as a product of two functions, one of which depens ONLY on x, another depens ONLY on y, or $f(x, y)=g(x) h(y)$. Then

$$
\frac{d y}{d x}=g(x) h(y)
$$

Definition. A differential equation $y^{\prime}=f(x, y)$ is called separable if it can be written in the form

$$
M(x) d x+N(y) d y=0
$$

Example 1. Determine whether the given equation is separable.

1. $(t-2 y)^{2} y^{\prime}=2$
no

$$
\begin{aligned}
& \text { wave for } \\
& \begin{array}{l}
y^{\prime}\left(t^{3}+1\right)-y^{\prime}\left(t^{3}+1\right) e^{2 y}=\frac{-y^{4} e^{y}}{\text { yes }} \rightarrow \frac{y^{\prime}\left(t^{3}+1\right)\left[1-e^{2 y}\right]}{\left(t^{3}+1\right)\left(1-e^{2 y}\right)}=\frac{-y^{4} e^{y}}{\left(t^{3}+1\right)\left(1-e^{2 y}\right)} \Rightarrow y^{\prime}=\frac{-y^{4} e^{y}}{\left(t^{3}+1\right)\left(1-e^{2 y}\right)} . \quad \text { for } e^{\prime} .
\end{array}
\end{aligned}
$$

3. $y x \ln x d x-\sqrt{y} d y+x \ln x d x=0$

$$
\frac{y x \ln x d x}{x \ln x d x}-\sqrt{y} d y+x \ln x d x=0 \Rightarrow x \ln k d x=\frac{\sqrt{y}}{y+1} d y
$$

4. $y^{\prime}=\cot ^{2}\left(\frac{x}{2}+y-1\right)+\frac{1}{2}$
no

How to solve a separable equation?

$$
\begin{gathered}
y^{\prime}=g(x) h(y) \\
y^{\prime}=\frac{d y}{d x} \\
d x\left(\frac{d y}{d x}\right)=\left(\frac{g(x) h(y)}{h(y)}\right) d x, \quad h(y) \neq 0
\end{gathered}
$$

$$
\int \frac{1}{h(y)} d y=\int g(x) d x
$$

$$
\begin{array}{ll}
H(y)=G(x)+C, & C H(y)]^{\prime}=\frac{1}{h(y)} \\
& {[G(x)]^{\prime}=g(x)}
\end{array}
$$

general solution of the equation. $\quad[G(x)]^{\prime}=g(x)$
check separately if zeroes of $h(y)$ are solutions of the

Example 2. Solve the equations/initial value problems:

1. xydx

$$
\begin{aligned}
& \frac{(x+1) d y}{(x+1) y}=-\frac{x y d x}{(x+1) y} \\
& \int \frac{d y}{y}=-\int \frac{(x+1)-1}{x+1} d x \\
& \ln |y|=-\int\left[\frac{x+1}{x+1}-\frac{1}{x+1}\right] d x \\
& \ln |y|=-\int\left[1-\frac{1}{x+1}\right] d x \Rightarrow
\end{aligned}
$$

$$
\text { 2. }\left(x^{2}-1\right) y^{\prime}+2 x y^{2}=0, \quad y(0)=1
$$

$$
y^{\prime}=\frac{d y}{d x}
$$

$\frac{\left(x^{2}-1\right) \frac{d y}{d x} d y}{y^{2}\left(x^{2}-1\right)}=\frac{-2 x y^{2} d x}{y^{2}\left(x^{2}-1\right)}$

$$
\int \frac{d y}{y^{2}}=-\int \frac{2 x d x}{x^{2}-1}
$$

$$
-\frac{1}{y}=-\ln \left|x^{2}-1\right|+C
$$

$y=\frac{1}{\ln \left|x^{2}-1\right|-c}$ general solution
plug in $x=0, \frac{1}{\ln \mid-c}=-\frac{1}{c}=1 \Rightarrow c=-1$
$y=\frac{1}{\ln \left|x^{2}-1\right|+1}$ the solution of the initial value problem.
3. $x y d x-\sqrt{x^{2}+1} \ln ^{2} y d y=0, \quad y>0$

$$
\begin{aligned}
& \frac{\sqrt{x^{2}+1} \ln ^{2} y d y=}{y \sqrt{x^{2}+1}}=\frac{x y d x}{y \sqrt{x^{2}+1}} \\
& \quad \int \frac{\ln ^{2} y}{y} d y=\int \frac{x}{\sqrt{x^{2}+1}} d x \\
& u=\ln y \\
& \quad \frac{\ln ^{3} y}{3}=\frac{1}{2} \frac{\left(x^{2}+1\right)^{1 / 2}}{1 / 2}+C \Rightarrow \frac{\ln ^{3} y}{3}=\left(x^{2}+1\right)^{1 / 2}+C \quad \text { implicit solution }
\end{aligned}
$$

4. $x \cos ^{2} y d x-\mathrm{e}^{x} \sin 2 y d y=0, \quad y(0)=0$

$$
\frac{e^{x} \sin 2 y d y}{e^{x} \cos ^{2} y}=\frac{x \cos ^{2} y d x}{e^{x} \cos ^{2} y}
$$

$$
\sin 2 y=2 \sin y \cos y
$$

$$
\frac{\sin 2 y}{\cos ^{2} y} d y=x e^{-x} d x
$$

$$
\frac{2 \sin y \cos y}{\cos ^{2} y} d y=x e^{-x} d x
$$

$2 \int \frac{\sin y}{\cos y} d y=\int x e^{-x} d x$ by parts

$$
\int u v^{\prime} d x=u v-\int v u^{\prime} d x
$$

$-2 \ln |\cos y|=-x e^{-x}+\int e^{-x} d x$

$$
+2 \ln |\cos y|=+x e^{-x}+e^{-x}+c
$$

$2 \ln |\cos y|=x e^{-x}+e^{-x}-c$ - general solution
Condition $y(0)=0$.
Plug in $x=0$ and $y=0$

$$
\begin{aligned}
2 \ln |\cos 0| & =0 e^{-0}+e^{-0}-c \\
0 & =1-c \Rightarrow c=1
\end{aligned}
$$

$2 \ln |\cos y|=x e^{-x}+e^{-x}-1$ solution of the initial value problem.

