Section 2.5 Autonomous equations.

Definition. A first order differential equation of the form

$$
\frac{d y}{d t}=f(y)
$$

is called autonomous (the independent variable does not appear explicitly).

Definition. The constant solutions of the equation $\frac{d y}{d t}=f(y)$ are called equilibrium solutions. They correspond to the zeros of f. Zeros of f are called critical points.

Definition. An equilibrium solution is stable if any neighboring solution is attracted to it as t goes to infinity. An equilibrium solution is unstable if any neighboring solution is repelled by the solution. An equilibrium solution that is not stable or unstable is called semistable.

Let $y=y_{0}$ is an equilibrium solution. Then

- $y=y_{0}$ is stable if $f(y)$ changes sign at y_{0} from " + " to " $-"$.
- $y=y_{0}$ is unstable if $f(y)$ changes sign at y_{0} from " $"$ to " + ".
- $y=y_{0}$ is semistable if $f(y)$ does not change sign at y_{0}.

For autonomous systems the slope on horizontal lines $y=y_{0}$ is the same and the qualitative analysis can be made on the so called phase line portrait.

Directions to draw phase line portrait:

1. Find all equilibrium points (i.e. roots of $f(y)=0$), draw a horizontal line and mark those points on it.
2. Check the sign of $f(y)$ in each of the intervals determined by the equilibrium points. Over those intervals where $f(y)>0$ draw arrows pointing to the right, and on those where $f(y)<0$ draw arrows pointing to the left (indicating in which direction are solutions owing).

Example 1. For the equation $\frac{d y}{d t}=y^{2}-1$

1. Find all equilibrium solutions of the equation.

$$
\begin{array}{r}
y^{2}-1=0 \Rightarrow \quad y= \pm 1 \\
y=1, y=-1 \quad \text { eq }
\end{array}
$$

2. Carry out the phase line analysis for the equation.

$$
f(y)=y^{2}-1
$$

$$
\begin{aligned}
& f(0)=-1<0 \\
& f(2)=4-1>0 \\
& f(-2)=4-1>0
\end{aligned}
$$

$$
\begin{array}{ll}
y=-1 & \text { stable } \\
y=1 & \text { unstable }
\end{array}
$$

2. Find all the equilibrium solutions of the equation

3. Let $y(t)$ be the solution of the equation satisfying the initial condition $y(0)=y_{0}$, where $-\infty \leq y_{0} \leq \infty$. Find the limit of $y(t)$ when $t \rightarrow \pm \infty$

4. Solve the equation.

$$
\begin{aligned}
\frac{d y}{d t} & =y^{2}-1 \\
\int \frac{d y}{y^{2}-1} & =\int d t
\end{aligned}
$$

Partial fractions:

$$
\begin{gathered}
1=A(y+1)+B(y-1) \\
y=-1: \quad 1=-2 B \rightarrow B=-1 / 2 \\
y=1: \quad 1=2 A \Rightarrow A=1 / 2 \\
\frac{1}{y^{2}-1}=\frac{1}{2}\left(\frac{1}{y-1}-\frac{1}{y+1}\right) \\
\frac{1}{2} \int\left(\frac{1}{y-1}-\frac{1}{y+1}\right) d y=\int d t \\
\frac{1}{2}[\ln |y-1|-\ln |y+1|]=t+C
\end{gathered}
$$

