Section 2.5 Autonomous equations.

Definition. A first order differential equation of the form

$$\frac{dy}{dt} = f(y)$$

is called autonomous (the independent variable does not appear explicitly).

Definition. The constant solutions of the equation $\frac{dy}{dt} = f(y)$ are called **equilibrium solutions**. They correspond to the zeros of f. Zeros of f are called **critical points**.

Definition. An equilibrium solution is **stable** if any neighboring solution is attracted to it as t goes to infinity. An equilibrium solution is **unstable** if any neighboring solution is repelled by the solution. An equilibrium solution that is not stable or unstable is called **semistable**.

Let $y = y_0$ is an equilibrium solution. Then

- $y = y_0$ is **stable** if f(y) changes sign at y_0 from "+" to "-".
- $y = y_0$ is **unstable** if f(y) changes sign at y_0 from "-" to "+".
- y = y₀ is semistable if f(y) does not change sign at y₀.

For autonomous systems the slope on horizontal lines $y = y_0$ is the same and the qualitative analysis can be made on the so called **phase line portrait**.

Directions to draw phase line portrait:

- 1. Find all equilibrium points (i.e. roots of f(y) = 0), draw a horizontal line and mark those points on it.
- 2. Check the sign of f(y) in each of the intervals determined by the equilibrium points. Over those intervals where f(y) > 0 draw arrows pointing to the right, and on those where f(y) < 0 draw arrows pointing to the left (indicating in which direction are solutions owing).

Example 1. For the equation $\frac{dy}{dt} = y^2 - 1$

1. Find all equilibrium solutions of the equation. $y^{2} = 0 \implies y = \pm 1$ y = 1, y = -1 equilibrium solutions.2. Carry out the phose line analysis for the equation. $f(y) = y^{2} - 1$ f(0) = -1 < 0 f(2) = 4 - 1 > 0 y = -1 stable y = 1 unstable

- 2) Find all the equilibrium solutions of the equation.
- 3. Sketch the direction field of the equation.
- 3. Let y(t) be the solution of the equation satisfying the initial condition $y(0) = y_0$, where $-\infty \le y_0 \le \infty$. Find the limit of y(t) when $t \to \pm \infty$

y (0)= y.

/ / y _e ∠ -	-1 < yo <1	y. 71
$\lim_{t \to \infty} y(t) = -1$	$\lim_{t\to\infty}y(t)=-1$	$\lim_{t\to\infty}y(t)=\infty$
$\lim_{t\to -\infty} y(t) = -\infty$	lim y(t) = 1	$\lim_{t \to -\infty} y(t) = 1$

4. Solve the equation.

$$\frac{dy}{dt} = y^{2}-1 \quad \text{separable}$$

$$\int \frac{dy}{y^{2}-1} = \int dt$$
Partial fractions:
$$\frac{1}{y^{2}-1} = \frac{1}{y^{2}-1} + \frac{1}{y^{2}-1} + \frac{1}{y^{2}-1}$$

$$= \frac{1}{y^{2}-1} + \frac{1}{y^{2}-1}$$

$$= \frac{1}{y^{2}-1} + \frac{1}{y^{2}-1}$$

$$= \frac{1}{y^{2}-1} = \frac{1}{y^{2}-1} + \frac{1}{y^{2}-1}$$

$$= \frac{1}{y^{2}-1} = \frac{1}{y^{2}-1} + \frac{1}{y^{2}-1}$$

$$= \frac{1}{y^{2}-1} = \frac{1}{y^{2}-1} + \frac{1}{y^{2}-1}$$

$$= \frac{1}{y^{2}-1} + \frac{1}{y^{2}-1} + \frac{1}{y^{2$$