Section 2.6 Exact equations and integrating factors.

Given an equation

$$
M(x, y) d x+N(x, y) d y=0
$$

There exists an implicit solution of the equation $F(x, y)=C$ if and only if

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

$F(x, y)$ satisfies the following conditions:

$$
\frac{\partial F(x, y)}{\partial x}=M(x, y), \quad \frac{\partial F(x, y)}{\partial y}=N(x, y)
$$

In such a case, the equation is called exact.
Example 1. Is the equation

$$
\left(3 x^{2}-2 x y+2\right) d x+\left(6 y^{2}-x^{2}+3\right) d y=0
$$

exact? If it is, solve it.

Example 2. Solve IVP:

$$
3 x^{2}-y+(2 y-x) y^{\prime}=0, \quad y(1)=3
$$

Example 3. Is the equation

$$
x^{2} y^{3}+x\left(1+y^{2}\right) y^{\prime}=0
$$

exact?

Multiply the equation by the integrating factor $\mu(x, y)=\frac{1}{x y^{3}}$ and then solve it.

Given an equation

$$
M(x, y) d x+N(x, y) d y=0
$$

If $\frac{M_{y}-N_{x}}{N(x, y)}$ is a function of x only, then a solution $\mu(x)$ of the equation

$$
\frac{d \mu}{d x}=\frac{M_{y}-N_{x}}{N(x, y)} \mu
$$

is an integrating factor for the differential equation.
Example 4. Find an integrating factor for the equation

$$
\left(3 x^{2} y+2 x y+y^{3}\right) d x+\left(x^{2}+y^{2}\right) d y=0
$$

and then solve the equation.

