Section 2.6 Exact equations and integrating factors.
Given an equation

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 . \tag{*}
\end{equation*}
$$

There exists an implicit solution of the equation $F(x, y)=C$ if and only if
$F(x, y)=C$ such that

$$
\text { if } \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \text { then }(*) \text { is exact }
$$

$F(x, y)$ satisfies the following conditions:

$$
\frac{\partial F(x, y)}{\partial x}=M(x, y), \quad \frac{\partial F(x, y)}{\partial y}=N(x, y), \text { is the general solution }
$$

In such a case, the equation is called exact.
Example 1. Is the equation

$$
\underbrace{\left(3 x^{2}-2 x y+2\right)}_{M(x, y)} d x+\underbrace{\left(6 y^{2}-x^{2}+3\right)}_{N(x, y)} d y=0
$$

$$
\frac{\partial M}{\partial y}=-2 x
$$

$$
\frac{\partial N}{\partial x}=-2 x
$$

match, thus the equation is exact

Find $F(x, y)$ sech that

$$
\begin{aligned}
& \begin{cases}\int \frac{\partial F}{\partial x} d x=M(x, y)=\left[\left[3 x^{2}-2 x y+2\right] d x\right. & \Rightarrow F(x, y)=x^{3}-x^{2} y+2 x+g(y) \\
\frac{\partial F}{\partial y}=N(x, y)=6 y^{2}-x^{2}+3 & g(y) \text { is an unknown function }\end{cases} \\
& \frac{\partial F}{\partial y}=0-x^{2}+0+g^{\prime}(y)=b y^{2}-x^{2}+3 \Rightarrow \int g^{\prime}(y) d\left[\left(b y^{2}+3\right] d y\right. \\
& g(y)=2 y^{3}+3 y+c \\
& F(x, y)=x^{3}-x^{2} y+2 x+2 y^{3}+3 y+c \\
& \text { General solution: } \quad x^{3}-x^{2} y+2 x+2 y^{3}+3 y+c=0
\end{aligned}
$$

Example 2. Solve IVP:

$$
\begin{gathered}
3 x^{2}-y+(2 y-x) y^{\prime}=0, \quad y(1)=3 \\
y^{\prime}=\frac{d y}{d x} \\
d x\left(\left(3 x^{2}-y\right)+(2 y-x) \frac{d y}{d x}=0(d x)\right. \\
\underbrace{\left(3 x^{2}-y\right)}_{M(x, y)} d x+\underbrace{(2 y-x)}_{N(x, y)} d y=0
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial M}{\partial y}=-1=\frac{\partial N}{\partial x}=-1
\end{gathered} \begin{array}{ll}
F(x, y): & \text { exact } \\
\begin{cases}\frac{\partial F}{\partial x}-3 x^{2}-y & F(x, y)=y^{2}-x y+g(x) \\
\int \frac{\partial F_{j} d y}{\partial y}(2 y-x) d y & g(x) \dot{y} \text { an unknown }\end{cases}
\end{array}
$$

$g(x) \dot{y}$ an unknown function.

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=-y+g^{\prime}(x)=4 x^{2}-y \\
& g^{\prime}(x)=3 x^{2} \Rightarrow g(x)=x^{3}+C
\end{aligned}
$$

$$
F(x, y)=y^{2}-x y+x^{3}+C
$$

General solution is $y^{2}-x y+x^{3}+c=0$
Plug in $y=3$ and $x=1: \quad 9-3+1+c=0 \Rightarrow c=-7$
$y^{2}-x y+x^{3}-7=0$ solution of the initial value problem.

Example 3. Is the equation

$$
\begin{aligned}
& y^{\prime}=\frac{d y}{d x} \\
& x^{2} y^{3}+x\left(1+y^{2}\right) y^{\prime}=0 \\
& x^{2} y^{3}+x\left(1+y^{2}\right) \frac{d y}{d x}=0 \text { or } \underbrace{x^{2} y^{3}}_{M(x, y)} d x+\underbrace{x\left(1+y^{2}\right)}_{N(x, y)} d y=0 \\
& \frac{\partial M}{\partial y}=3 x^{2} y^{2} \neq \frac{\partial N}{\partial x}=1+y^{2} \\
& \text { it is no exact. }
\end{aligned}
$$

exact?

Multiply the equation by the integrating factor $\mu(x, y)=\frac{1}{x y^{3}}$ and then solve it.

$$
\begin{aligned}
& \begin{array}{l}
\text { Find } F(x, y) \text { such that } \\
\left\{\begin{array}{l}
\frac{\partial F}{\partial x}=x \\
\int \frac{\partial F d y}{\partial y}\left(\left[\frac{1}{y^{3}}+\frac{1}{y}\right] d y\right.
\end{array}\right.
\end{array} \\
& F(x, y)=\frac{y^{-2}}{-2}+\ln |y|+g(x) \\
& g(x) \text { is an unknown } \\
& \text { function. } \\
& \frac{\partial F}{\partial x}=g^{\prime}(x)=x \Rightarrow g(x)=\frac{x^{2}}{2}+C \\
& \text { general solution }-\frac{1}{2 y^{2}}+\ln |y|+\frac{x^{2}}{2}+c=0
\end{aligned}
$$

Given an equation

$$
M(x, y) d x+N(x, y) d y=0
$$

If $\frac{M_{y}-N_{x}}{N(x, y)}$ is a function of x only, then a solution $\mu(x)$ of the equation

$$
\frac{d \mu}{d x}=\frac{M_{y}-N_{x}}{N(x, y)} \mu
$$

is an integrating factor for the differential equation.
Example 4. Find an integrating factor for the equation

$$
\underbrace{\left(3 x^{2} y+2 x y+y^{3}\right.}_{M(x, y)}) d x+\underbrace{\left(x^{2}+y^{2}\right)}_{N(x, y)}) d y=0
$$

$$
\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N(x, y)}=\frac{3 x^{2}+2 x+3 y^{2}-(2 x)}{x^{2}+y^{2}}=\frac{3\left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}=3
$$

Integrating factor $\mu(x): \frac{d \mu}{d x}=3 \mu$
and then solve the equation.

$$
\begin{gathered}
\frac{d \mu}{\mu}=3 d x \Rightarrow \ln |\mu|=3 x+\ell^{30} \\
\mu=e^{3 x}
\end{gathered}
$$

$$
e^{3 x}\left[\left(3 x^{2} y+2 x y+y^{3}\right) d x+\left(x^{2}+y^{2}\right) d y\right]=0
$$

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=e^{3 x}\left(3 x^{2}+2 x+3 y^{2}\right) \\
& \frac{\partial N}{\partial x}=3 e^{3 x}\left(x^{2}+y^{2}\right)+e^{3 x}(2 x)
\end{aligned}
$$

match, exact

Find $F(x, y)$ such that

$$
\begin{aligned}
& F(x, y) \text { such that } \\
& \left\{\begin{array}{l}
\frac{\partial F}{\partial x}=e^{3 x}\left(3 x^{2} y+2 x y+y^{3}\right) \\
\int \frac{\partial F}{\partial y} d y e^{3 x}\left(x^{2}+y^{2}\right) d y \Rightarrow F(x, y)=e^{3 x}\left(x^{2} y+\frac{y^{3}}{3}\right)+g(x) \\
\frac{\partial F}{\partial x}=3 e^{3 x}\left(x^{2} y+\frac{y^{3}}{\partial 3}\right)+e^{3 x}(2 x y)+g^{\prime}(x)=e^{3 x}\left(3 x^{2} y+2 x y^{\prime}+y^{3}\right) \\
g^{\prime}(x)=0, \quad g(x)=c
\end{array}\right.
\end{aligned}
$$

$$
F(x, y)=e^{3 x}\left(x^{2} y+\frac{y^{3}}{3}\right)+c
$$

General solution $\quad e^{3 x}\left(x^{2} y+\frac{y^{3}}{3}\right)+c=0$

