Section 3.1 Homogeneous Equations with Constant Coefficients

We begin our discussion with homogeneous equations with constant coefficients

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

where a, b, c are constants.
We try to find a solution of the form $y=\mathrm{e}^{r t}$.

Definition. An equation

$$
a r^{2}+b r+c=0
$$

is called the auxiliary equation or characteristic equation associated with equation $a y^{\prime \prime}+b y^{\prime}+c y=0$.

If $b^{2}-4 a c>0$, then the auxiliary equation has two distinct real roots r_{1} and r_{2}. Then

$$
y(x)=c_{1} \mathrm{e}^{r_{1} t}+c_{2} \mathrm{e}^{r_{2} t}
$$

is the general solution to the equation.
Example 1. Find the general solution to the given equation
(a) $y^{\prime \prime}-y^{\prime}-2 y=0$.
(b) $y^{\prime \prime}+7 y^{\prime}+10 y=0$.

Example 2. Solve the given initial value problems.
(a) $y^{\prime \prime}+y^{\prime}=0, y(0)=2, y^{\prime}(0)=1$.
(b) $y^{\prime \prime}+4 y^{\prime}-5 y=0, y(0)=11, y^{\prime}(0)=-7$.

