Section 3.2 Solutions of linear homogeneous equations; the Wronskian.

A second order ordinary differential equation has the form

$$
\frac{d^{2} y}{d t^{2}}=f\left(t, y, \frac{d y}{d t}\right)
$$

where f is some given function.
An initial value problem consists of a differential equation together with the pair of initial conditions

$$
y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{1}
$$

A second order ordinary differential equation is said to be linear if it is written in the form

$$
P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=G(t)
$$

or

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+p(t) \frac{d y}{d t}+q(t) y=g(t) \tag{1}
\end{equation*}
$$

If $g(t)=0$, then the equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

is called homogeneous. Otherwise, the equation is called nonhomogeneous.

Theorem 1 (existence and uniqueness of solution). Suppose $p(t), q(t)$, and $g(t)$ are continuous on some interval (a, b) that contains the point t_{0}. Then, for any choice of initial values y_{0}, y_{1} there exists a unique solution $y(t)$ on the whole interval (a, b) to the initial value problem

$$
\begin{gathered}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \\
y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(\mathbf{女}_{0}=y_{1}\right.
\end{gathered}
$$

Example 1. Find the largest interval for which Theorem ensures the existence and uniqueness of solution to the initial value problem

$$
\begin{aligned}
& e^{t} y^{\prime \prime}-\frac{y^{\prime}}{t-3}+y=\ln t, \quad \Rightarrow \quad y^{\prime \prime}-\frac{1}{e^{t}(t-3)} y^{\prime}+\frac{1}{e^{t}} y=\frac{\ln t}{e^{t}} \\
& y(1)=y_{0}, \quad y^{\prime}(1)=y_{1}
\end{aligned}
$$

where y_{0} and y_{1} are real constants.

$$
\begin{aligned}
& p(t)=-\frac{1}{e^{t}(t-3)} \\
& q(t)=\frac{1}{e^{t}}=e^{-t} \\
& g(t)=\frac{\ln t}{e^{t}}
\end{aligned}
$$

continuous if $t \neq 3$

$$
\text { continuous for all } t
$$

$$
\text { continuous for } t>0
$$

$$
(0,3)
$$

$$
\xrightarrow[\substack{0 \\
0}]{ } \begin{array}{r}
\text { all three } \\
\text { are continuocy }
\end{array}
$$

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Theorem 2 (Principle of superposition). Let y_{1} and y_{2} be solutions to the homogeneous equation (2). Then any linear combination $C_{1} y_{1}+C_{2} y_{2}$ of y_{1} and y_{2}, where C_{1} and C_{2} are constants, is also the solution to (2).

Example 2. Verify that $y_{1}(t)=1$ and $y_{2}(t)=t^{1 / 2}$ are solutions of the differential equation $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$ for $t>0$. Then show that $y=c_{1}+c_{2} t^{1 / 2}$ is not, in general, a solution of this equation. Explain why this result does not contradict Theorem 1 .

$$
\begin{aligned}
& y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0 \\
& y=c_{1}+c_{2} \sqrt{t} \\
& y^{\prime}=\frac{c_{2}}{2 \sqrt{t}}, y^{\prime \prime}=c_{2} \cdot \frac{1}{2} \cdot\left(-\frac{1}{2}\right) t^{-3 / 2}=-\frac{c_{2}}{4 t^{3 / 2}} \\
& y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=-\frac{c_{2}}{4 t^{3 / 2}} \cdot\left(c_{1}+c_{2} \sqrt{t}\right)+\frac{c_{2}^{2}}{4 t} \neq 0
\end{aligned}
$$

Definition For any two differentiable functions y_{1} and y_{2}, the determinant

$$
\begin{array}{|l|l|}
\hline W\left[y_{1}, y_{2}\right](t)=\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t) \\
\hline
\end{array}
$$

Example 3. Find the Wronskian for the functions $e^{t} \sin t, e^{t} \cos t$.

$$
\begin{aligned}
& W=\left|\begin{array}{cc}
e^{t} \sin t & e^{t} \cos t \\
e^{t} \sin t+e^{t} \cos t & e^{t} \cos t-e^{t} \sin t
\end{array}\right| \\
= & e^{t} \sin t\left(e^{t} \cos t-e^{t} \sin t\right)-e^{t} \cos t\left(e^{t} \sin t+e^{t} \cos t\right) \\
= & e^{2 t}[\sin t \cos t \underbrace{\left.-\sin ^{2} t-\cos ^{2} t-\sin t \cos t\right]=-e^{2 t} \neq 0 \text { for all } t .}_{-1} \$.
\end{aligned}
$$

Example 4. If the Wronskian of f and g is $3 e^{4 t}$, and if $f(t)=e^{2 t}$, find $g(t)$.

$$
W[f, g]=\left|\begin{array}{ll}
e^{2 t} & g(t) \\
2 e^{2 t} & g^{\prime}(t)
\end{array}\right|=\frac{e^{2 t} g^{\prime}(t)-2 e^{2 t} g(t)}{e^{2 t}}=\frac{3 e^{4 t}}{e^{2 t}}
$$

$$
\begin{array}{ll}
g^{\prime}(t)-2 g(t)=3 e^{2 t} & \text { linear } \\
\text { list ord }
\end{array}
$$

Integrating factor $\mu(t): \frac{d \mu}{d t}=-2 \mu$

$$
\begin{gathered}
\frac{d \mu}{\mu}=-2 d t \Rightarrow \mu(t)=e^{-2 t} \\
g(t) e^{-2 t}=\int 3 e^{2 t} e^{-2 t} d t=3 t+C \\
g(t)=3 t e^{2 t}+C e^{+2 t}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Definition 2. A pair of solutions }\left\{y_{1}, y_{2}\right\} \text { to } y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \text { on } I \text { is called fundamental solution } \\
& \text { set if } \\
& \qquad W\left[y_{1}, y_{2}\right]\left(t_{0}\right) \neq 0
\end{aligned}
$$

at some $t_{0} \in I$.
Theorem 3. (Fundamental solutions of homogeneous equations) Let y_{1} and y_{2} denote two solutions on I to

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

where $p(t)$ and $q(t)$ are continuous on I. Suppose at some point $t_{c} \in I$ these solutions satisfy

$$
\begin{equation*}
W\left[y_{1}, y_{2}\right]\left(t_{0}\right) \neq 0 \tag{3}
\end{equation*}
$$

Then every solution to (2) on I can be expressed in the form

$$
\begin{equation*}
y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t) \tag{4}
\end{equation*}
$$

where C_{1} and C_{2} are constants.

Theorem 4. (Abels Theorem) If y_{1} and y_{2} are solutions of the differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

where p and q are continuous on an open interval I, then the Wronskian is given by

$$
W\left(y_{1}, y_{2}\right)(t)=c \exp \left[\int p(t) d t\right]
$$

where c is a certain constant that depends on y_{1} and y_{2}, but not on t.

