Complex numbers review.

A complex number is represented in the form $z=x+i y$, where x and y are real numbers satisfying the usual rules of addition and multiplication, and the symbol i, called the imaginary unit, has the property

$$
i^{2}=-1
$$

The numbers x and y are called the real and imaginary part of z, respectively, and are denoted by

$$
x=\Re(z), y=\Im(z) .
$$

We say that z is real if $y=0$, while it is purely imaginary if $x=0$.

If $z=x+i y$, then a number $\bar{z}=x-i y$ is called the complex conjugate to z.
Let $z=x+i y, z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, then

1. $z \bar{z}=x^{2}+y^{2}$
2. $c z=c x+i(c y)$ for any constant c
3. $z_{1} \pm z_{2}=\left(x_{1} \pm x_{2}\right)+i\left(y_{1} \pm y_{2}\right)$
4. $z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right)$
5. $\frac{z_{1}}{z_{2}}=\frac{z_{1} \overline{z_{2}}}{z_{2} \overline{z_{2}}}$

Geometrically, complex numbers can be represented as points in the plane.

We will call the $x y$-plane, when viewed in this manner, the complex plane, with the x-axis designated as the real axis, and the y-axis as the imaginary axis. We designate the complex number zero as the origin. Thus, $x+i y=0$ means $x=y=0$.

The complex number $z=x+i y$ can be represented in

- polar form as $z=r(\cos \theta+i \sin \theta)$, where $r=\sqrt{x^{2}+y^{2}}$ and $\tan \theta=\frac{y}{x}$.
- exponential form as $z=r e^{i \theta}$.

Euler's formula: $e^{a+i b}=e^{a}(\cos b+i \sin b)$

Complex roots of the characteristic equation.

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

where a, b, c are constants and $b^{2}-4 a c<0$.
Then the auxiliary equation

$$
a r^{2}+b r+c=0
$$

has two complex conjugate roots:

$$
\begin{gathered}
r_{1}=-\frac{b}{2 a}+i \frac{\sqrt{4 a c-b^{2}}}{2 a}, \quad r_{2}=-\frac{b}{2 a}-i \frac{\sqrt{4 a c-b^{2}}}{2 a}=\overline{r_{1}} . \\
\Re\left(r_{1}\right)=-\frac{b}{2 a}=\alpha \\
\Im\left(r_{1}\right)=\frac{\sqrt{4 a c-b^{2}}}{2 a}=\beta
\end{gathered}
$$

Then the solution of the equation is

$$
y(t)=e^{r_{1} t}=e^{(\alpha+i \beta) t}=e^{\alpha t}(\cos \beta t+i \sin \beta t)
$$

Then the fundamental solution set is

$$
y_{1}(t)=\Re[y(t)]=e^{\alpha t} \cos \beta t, \quad y_{2}(t)=\Im[y(t)]=e^{\alpha t} \sin \beta t
$$

Let us find $W\left[y_{1}, y_{2}\right](t)$

If the auxiliary equation

$$
a r^{2}+b r+c r=0
$$

has two complex-conjugate roots

$$
r_{1,2}=-\frac{b}{2 a} \pm i \frac{\sqrt{4 a c-b^{2}}}{2 a}
$$

then the general solution of the equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

is

$$
y(t)=e^{\alpha t}\left(C_{1} \cos \beta t+C_{2} \sin \beta t\right)
$$

where $\alpha=-\frac{b}{2 a}, \beta=\frac{\sqrt{4 a c-b^{2}}}{2 a}, C_{1}$ and C_{2} are arbitrary constants.

Example 1. Find the general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

Example 2. Solve the initial value problem

$$
y^{\prime \prime}+4 y^{\prime}+5 y=0, \quad y(0)=1, y^{\prime}(0)=0
$$

