Section 3.4 Repeated roots; reduction of order.

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

where a, b, c are constants and $b^{2}-4 a c=0$.
Then the auxiliary equation

$$
a r^{2}+b r+c=0
$$

has one repeated root

$$
r=-\frac{b}{2 a}
$$

and the corresponding solution of the equation is $y_{1}(t)=e^{-\frac{b}{2 a} t}$.
We use reduction of order to find a second solution.
We'll look for the general solution of the form

$$
y(t)=v(t) e^{-\frac{b}{2 a} t}
$$

where $v(t)$ is an unknown function. Let's plug $y(t)$ back into the equation:

If the auxiliary equation $a r^{2}+b r+c r=0$ has one repeated root

$$
r=-\frac{b}{2 a}
$$

then the general solution of the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y(t)=e^{-\frac{b}{2 a} t}\left(C_{1}+C_{2} t\right)
$$

where C_{1} and C_{2} are arbitrary constants.

Example 1. Find the general solution of the equation

$$
9 y^{\prime \prime}+6 y^{\prime}+y=0
$$

Example 2. Solve the initial value problem

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0, \quad y(0)=0, y^{\prime}(0)=2
$$

