Section 3.6 Variation of Parameters

Consider the nonhomogeneous linear second order differential equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x) . \tag{1}
\end{equation*}
$$

Let $\left\{y_{1}(x), y_{2}(x)\right\}$ be a fundamental solution set to the corresponding homogeneous equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

The general solution to this homogeneous equation is $y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$, where c_{1} and c_{2} are constants. To find a particular solution to (1) we assume that $c_{1}=c_{1}(x)$ and $c_{2}=c_{2}(x)$ are functions of x and we seek a particular solution $y_{p}(x)$ in the form

$$
y_{p}(x)=c_{1}(x) y_{1}(x)+c_{2}(x) y_{2}(x) .
$$

Let's substitute $y_{p}(x), y_{p}^{\prime}(x)$, and $y_{p}^{\prime \prime}(x)$ into (1):

To summarize, we can find $c_{1}(x)$ and $c_{2}(x)$ solving the system

$$
\left\{\begin{array}{l}
c_{1}^{\prime}(x) y_{1}(x)+c_{2}^{\prime}(x) y_{2}(x)=0 \\
c_{1}^{\prime}(x) y_{1}^{\prime}(x)+c_{2}^{\prime}(x) y_{2}^{\prime}(x)=g(x)
\end{array}\right.
$$

for $c_{1}^{\prime}(x)$ and $c_{2}^{\prime}(x)$. Cramer's rule gives

$$
c_{1}^{\prime}(x)=\frac{-g(x) y_{2}(x)}{W\left[y_{1}, y_{2}\right](x)}, \quad c_{2}^{\prime}(x)=\frac{g(x) y_{1}(x)}{W\left[y_{1}, y_{2}\right](x)}
$$

Then

$$
c_{1}(x)=\int \frac{-g(x) y_{2}(x)}{W\left[y_{1}, y_{2}\right](x)} d x \quad c_{2}(x)=\int \frac{g(x) y_{1}(x)}{W\left[y_{1}, y_{2}\right](x)} d x
$$

Example 1. Find the general solution to the equation

$$
y^{\prime \prime}+y=\frac{1}{\sin x}
$$

