Section 3.8 Forced vibrations

Let's investigate the effect of a cosine forcing function on the system governed by the differential equation

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=F_{0} \cos \omega t
$$

where F_{0}, γ are nonnegative constants and $\gamma^{2}<4 m k$ (the system is underdamped).
The general solution to this equation is

$$
u(t)=A \mathrm{e}^{-(\gamma / 2 m) t} \sin \left(\frac{\sqrt{4 m k-\gamma^{2}}}{2 m} t+\phi\right)+\frac{F_{0}}{\sqrt{\left(k-m \omega^{2}\right)^{2}+b^{2} \omega^{2}}} \sin (\omega t+\theta)
$$

where A, ϕ are constants and $\tan \theta=\frac{k-m \gamma^{2}}{b \gamma}$.

$$
y_{h}(t)=A \mathrm{e}^{-(\gamma / 2 m) t} \sin \left(\frac{\sqrt{4 m k-\gamma^{2}}}{2 m} t+\phi\right)
$$

is called the transient part of solution. $y_{h} \rightarrow 0$ as $t \rightarrow \infty$.

$$
y_{p}(t)=\frac{F_{0}}{\sqrt{\left(k-m \omega^{2}\right)^{2}+b^{2} \omega^{2}}} \sin (\omega t+\theta)
$$

is the offspring of the external forcing function $f(t)=F_{0} \cos \omega t$. y_{p} is sinusoidal with angular frequency ω. y_{p} is out of phase with $f(t)$ by the angle $\theta-\pi / 2$, and its magnitude is different by the factor

$$
\frac{1}{\sqrt{\left(k-m \omega^{2}\right)^{2}+b^{2} \omega^{2}}}
$$

y_{p} is called the steady-state solution.
The factor $\frac{1}{\sqrt{\left(k-m \omega^{2}\right)^{2}+b^{2} \omega^{2}}}$ is called the frequency gain or gain factor.
Example 1. A $2-\mathrm{kg}$ mass is attached to a spring with stiffness $k=45 \mathrm{~N} / \mathrm{m}$. At time $t=0$, an external force $f(t)=12 \cos 3 t$ is applied to the system. The damping constant for the system is $4 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$. Determine the steady-state solution for the system.

In general, the amplitude of the steady-state solution depends on ω and is given by

$$
A(\omega)=F_{0} M(\omega)=\frac{1}{\sqrt{\left(k-m \omega^{2}\right)^{2}+b^{2} \omega^{2}}}
$$

$M(\omega)$ is the frequency gain. The graph of $M(\omega)$ is called the frequency response curve or resonance curve for the system.
$M^{\prime}(\omega)=0$ when either $\omega=0$ or

$$
\omega=\omega_{r}=\sqrt{\frac{k}{m}-\frac{\gamma^{2}}{2 m^{2}}}
$$

When the system is critically damped or overdamped, $M^{\prime}(\omega)=0$ only when $\omega=0$. When $\gamma^{2}-2 m k<0$, then $M^{\prime}(\omega)=0$ at

$$
\omega_{r}=\sqrt{\frac{k}{m}-\frac{\gamma^{2}}{2 m^{2}}}
$$

The value $\omega_{r} / 2 \pi$ is called the resonance frequency for the system. When the system is stimulated by an external force as this frequency, it is said to be at resonance.

Consider the undamped system $(\gamma=0)$ with forcing term $F_{0} \cos \omega t$. This system is governed by

$$
\begin{gathered}
m \frac{d^{2} y}{d t^{2}}+k y=F_{0} \cos \omega t \\
y(t)=y_{h}(t)+y_{p}(t) \\
y_{h}(t)=A \sin \left(\omega_{0} t+\phi\right), \quad \omega_{0}=\sqrt{k / m}
\end{gathered}
$$

If $\omega \neq \omega_{0}$

$$
y_{p}(t)=\frac{F_{0}}{k-m \omega^{2}} \sin (\omega t+\theta)
$$

Example 2. The equation of the motion of the undamped system is given by

$$
y^{\prime \prime}+4 y=2 \cos t, \quad y(0)=y^{\prime}(0)=0
$$

Solve the initial value problem and sketch the solution versus t.

This type of motion, possessing a periodic variation of amplitude, is called a beat.

If $\omega=\omega_{0}$

$$
y_{p}(t)=\frac{F_{0}}{2 m \omega_{0}} t \sin \omega_{0} t
$$

Hence, in the undamped resonant case $\left(\omega=\omega_{0}\right)$,

$$
y(t)=A \sin \left(\omega_{0} t+\phi\right)+\frac{F_{0}}{2 m \omega_{0}} t \sin \omega_{0} t
$$

$y_{p}(t)$ oscillates between $-\frac{F_{0}}{2 m \omega_{0}}$ and $\frac{F_{0}}{2 m \omega_{0}}$. As $t \rightarrow \infty$, the maximum magnitude of $y_{p}(t) \rightarrow \infty$.
Example 3. Consider the equation of motion for an undamped system at resonance

$$
y^{\prime \prime}+9 y=2 \cos (3 t), \quad y(0)=y^{\prime}(0)=0
$$

Solve the initial value problem and sketch the solution versus t.

