## Chapter 7. Systems of first order linear equations.

## Section 7.1 Introduction

1. First-order system of differential equations:

$$
\begin{align*}
x_{1}^{\prime} & =F_{1}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
x_{2}^{\prime} & =F_{2}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \vdots  \tag{1}\\
x_{n}^{\prime} & =F_{n}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right)
\end{align*}
$$

2. A set of differentiable functions $x_{1}(t), x_{2}(t), \ldots, x_{n}(t)$ satisfying the system (1) is called a solution of the system (1).
3. System of ODE using a vector notation:

$$
\mathbf{X}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad \mathbf{F}=\left(\begin{array}{c}
F_{1}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
F_{2}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
\vdots \\
F_{n}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array}\right)
$$

Then the system (1) can be written as

$$
\begin{equation*}
\mathbf{X}^{\prime}=\mathbf{F}(t, \mathbf{X}) \tag{2}
\end{equation*}
$$

More generally, any differential equation of order $n$,

$$
y^{(n)}=f\left(t, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n-1)}\right)
$$

can be transformed to a system of $n$ differential equations of the first order by introducing derivatives up to order $n-1$ as new variables.
4. To transform the following $n$-th order IVP,

$$
\begin{gathered}
y^{(n)}=f\left(t, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n-1)}\right) \\
\left(t_{0}\right)=\alpha_{0}, \quad y^{\prime}\left(t_{0}\right)=\alpha_{1}, \ldots, \quad y^{(n-1)}\left(t_{0}\right)=\alpha_{n-1}
\end{gathered}
$$

into the system we set

$$
\begin{gathered}
x_{1}(t)=y(t) \\
x_{2}(t)=y^{\prime}(t) \\
\vdots \\
x_{n}(t)=y^{(n-1)}(t)
\end{gathered}
$$

to get

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=x_{3} \\
& \vdots \\
& x_{n}^{\prime}=f\left(t, x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

subject to

$$
x_{1}\left(t_{0}\right)=\alpha_{0}, \quad x_{2}\left(t_{0}\right)=\alpha_{1}, \ldots, \quad x_{n}\left(t_{0}\right)=\alpha_{n-1} .
$$

5. Note, if $f$ depends on $t$ then the system is called non-autonomous and the phase portrait (space) in this case is in $\mathbb{R}^{n+1}$. Otherwise (i.e. if $f$ doesn't depend on $t$ ) the system is autonomous and the phase portrait (space) in this case is in $\mathbb{R}^{n}$.
6. Important: Not any system of $n$ first order ODE comes from a scalar $n$-th order.

Example 1. Transform the differential equation into a system of first order equations.
(a) $y^{\prime \prime}+5 y^{\prime}-2 y=\sin t$
(b) $y^{\prime \prime \prime}+3 y^{\prime}+y=4$

Example 2. Transform the initial value problem

$$
y^{\prime \prime}+.25 y^{\prime}+4 t=2 \cos 3 t, \quad y(0)=1, y^{\prime}(0)=-2
$$

into a system of 2 first order differential equations.
7. Existence and Uniqueness Theorem for IVP defined by a system: Consider the IVP:

$$
\begin{align*}
x_{1}^{\prime} & =F_{1}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
x_{2}^{\prime} & =F_{2}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \vdots \\
x_{n}^{\prime} & =F_{n}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right)  \tag{3}\\
x_{1}\left(t_{0}\right) & =x_{1}^{0} \\
x_{2}\left(t_{0}\right) & =x_{2}^{0} \\
& \vdots \\
x_{n}\left(t_{0}\right) & =x_{n}^{0}
\end{align*}
$$

If each of the functions $F_{1}, F_{2}, \ldots, F_{n}$ and the partial derivatives $\frac{\partial F_{1}}{\partial x_{k}}, \frac{\partial F_{2}}{\partial x_{k}}, \ldots, \frac{\partial F_{n}}{\partial x_{k}} \quad(1 \leq k \leq n)$ are continuous in a region

$$
R=\left\{\alpha<t<\beta, \alpha_{1}<x_{1}<\beta_{1}, \alpha_{2}<x_{1}<\beta_{2}, \ldots, \alpha_{n}<x_{n}<\beta_{n}\right\}
$$

and the point $\left(t_{0}, x_{1}^{0}, \ldots, x_{n}^{0}\right)$ belongs to $R$, then there is an interval $\left(t_{0}-h, t_{0}+h\right)$ in which there exists a unique solution of the IVP (3).

## Linear Systems

8. When each of the functions $F_{1}, F_{2}, \ldots, F_{n}$ in (3) is linear in the dependent variables $x_{1}, \ldots, x_{n}$, we get a system of linear equations:

$$
\begin{align*}
x_{1}^{\prime} & =p_{11}(t) x_{1}+p_{12}(t) x_{2}+\ldots+p_{1 n}(t) x_{n}+g_{1}(t) \\
x_{2}^{\prime} & =p_{21}(t) x_{1}+p_{22}(t) x_{2}+\ldots+p_{2 n}(t) x_{n}+g_{2}(t) \\
& \vdots  \tag{4}\\
x_{n}^{\prime} & =p_{n 1}(t) x_{1}+p_{n 2}(t) x_{2}+\ldots+p_{n n}(t) x_{n}+g_{n}(t)
\end{align*}
$$

When $g_{k}(t) \equiv 0(1 \leq k \leq n)$, the linear system (4) is said to be homogeneous; otherwise it is nonhomogeneous.
9. Existence and Uniqueness Theorem for linear IVP:

If the functions $p_{11}, p_{12}, \ldots, p_{n n}$ and $g_{1}, \ldots, g_{n}$ are continuous on an open interval $I=\{t: \alpha<t<\beta\}$, then there exists a unique solution of the system (4) that also satisfies the initial conditions $x_{1}\left(t_{0}\right)=$ $x_{1}^{0}, x_{2}\left(t_{0}\right)=x_{2}^{0}, \ldots, x_{n}\left(t_{0}\right)=x_{n}^{0}$, where $t_{0}$ is any point of $I$. Moreover, the solution exists throughout the interval $I$.

## Matrix Form of A Linear System

10. If $X, P(t)$, and $G(t)$ denote the respective matrices

$$
X=\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right), \quad P(t)=\left(\begin{array}{cccc}
p_{11}(t) & p_{12}(t) & \ldots & p_{1 n}(t) \\
p_{21}(t) & p_{22}(t) & \ldots & p_{2 n}(t) \\
\vdots & & & \vdots \\
p_{n 1}(t) & p_{n 2}(t) & \ldots & p_{n n}(t)
\end{array}\right), \quad G(t)=\left(\begin{array}{c}
g_{1}(t) \\
g_{2}(t) \\
\vdots \\
g_{n}(t)
\end{array}\right)
$$

then the system of linear first-order DE (4) can be written as

$$
X^{\prime}=P X+G
$$

If the system is homogeneous, its matrix form is then

$$
X^{\prime}=P X
$$

11. Example 3. Express the given system in matrix form:
(a) $\quad \begin{aligned} & x_{1}^{\prime}=x_{2} \\ & x_{2}^{\prime}=-x\end{aligned}$
$x_{1}^{\prime}=x_{2}-x_{1}+t$
(b) $x_{2}^{\prime}=-x_{1}+7 x_{2}-x_{3}-e^{t}$ $x_{3}^{\prime}=2 x_{2}-x_{3}+\sin t$
