Section 7.3 Systems of Linear Algebraic Equations. Eigenvalues and Eigenvectors

Gauss Elimination Method

The Gauss Method is a suitable technique for solving systems of linear equations of any size. A sequence of operations (see below) of the Gauss-Jordan elimination method allows us to obtain at each step an equivalent system - that is, a system having the same solution as the original system.

The operations of the Gauss-Jordan elimination method are

1. Interchange any two equations.
2. Replace an equation by a nonzero multiple of itself.
3. Replace an equation by itself plus a nonzero multiple of any other equation.

An augmented matrix that is formed by combining the coefficient matrix and the constant matrix. For example, for the system of linear equations $\left\{\begin{array}{ccccc}3 x_{1} & + & 12 x_{2} & = & 20 \\ 2 x_{2} & = & x_{1} & +7\end{array} \quad\right.$ the augmented matrix is $\left(\begin{array}{cc|c}3 & 12 & 10 \\ 1 & -2 & 7\end{array}\right)$. The goal of the Gauss Elimination Method is to get the augmented matrix into Reduced Echelon Form. A matrix is in row echelon form if

- All nonzero rows (rows with at least one nonzero element) are above any rows of all zeroes (all zero rows, if any, belong at the bottom of the matrix).
- The leading coefficient (the first nonzero number from the left, also called the pivot) of a nonzero row is always strictly to the right of the leading coefficient of the row above it.
- All entries in a column below a leading entry are zeroes (implied by the first two criteria).

To put a matrix in Reduced Form, there are three valid Row Operations:

1. Interchange any two rows $\left(R_{i} \leftrightarrow R_{j}\right)$.
2. Replace any row by a nonzero constant multiple of itself ($R_{i} \leftrightarrow c R_{i}$).
3. Replace any row by the sum of that row and a constant multiple of any other row $R_{i} \leftrightarrow\left(R_{i}+c R_{j}\right)$.

Eigenvalues and Eigenvectors
Definition. A number λ is called an eigenvalue of matrix A if there exists a nonzero vector v such that

$$
A v=\lambda v
$$

and v is called an eigenvector corresponding to the eigenvalue λ. Example. If A is diagonal matrix,

$$
A=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right)
$$

then the numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are eigenvalues and the vectors

$$
v_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right), \ldots, \quad v_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)
$$

are the corresponding eigenvectors.

Eigenvalue are solutions of the following characteristic equation (polynomial):

$$
\operatorname{det}(A-\lambda I)=0
$$

The characteristic equation in the case $n=2$ can be found as

$$
\lambda^{2}-\operatorname{trace}(A) \lambda+\operatorname{det}(A)=0
$$

Remark. For $n \times n$ matrix the characteristic equation is a polynomial equation of degree n. The eigenvectors corresponding to λ can be found by solving the corresponding system of linear equations $(A-\lambda I) v=0$ (as we will see in the next.
Example 1. Find eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{cc}-2 & 1 \\ 2 & -3\end{array}\right)$.

Example 2. Given

$$
A=\left(\begin{array}{ccc}
1 & -1 & 4 \\
3 & 2 & -1 \\
2 & 1 & -1
\end{array}\right)
$$

1. Find eigenvalues of A.
2. Find eigenvectors of A
